59 research outputs found

    Evidence for a quadruplex structure in the polymorphic hs1.2 enhancer of the immunoglobulin heavy chain 3’ regulatory regions and its conservation in mammals

    Get PDF
    Regulatory regions in the genome can act through a variety of mechanisms that range from the occurrence of histone modifications to the presence of protein-binding loci for self-annealing sequences. The final result is often the induction of a conformational change of the DNA double helix, which alters the accessibility of a region to transcription factors and consequently gene expression. A similar to 300 kb regulatory region on chromosome 14 at the 3' end (3'RR) of immunoglobulin (Ig) heavy-chain genes shows very peculiar features, conserved in mammals, including enhancers and transcription factor binding sites. In primates, the 3'RR is present in two copies, both having a central enhancer named hs1.2. We previously demonstrated the association between different hs1.2 alleles and Ig plasma levels in immunopathology. Here, we present the analysis of a putative G-quadruplex structure (tetraplex) consensus site embedded in a variable number tandem repeat (one to four copies) of hs1.2 that is a distinctive element among the enhancer alleles, and an investigation of its three-dimensional structure using bioinformatics and spectroscopic approaches. We suggest that both the role of the enhancer and the alternative effect of the hs1.2 alleles may be achieved through their peculiar three-dimensional-conformational rearrangement

    Analysis of Four New Enterococcus faecalis Phages and Modeling of a Hyaluronidase Catalytic Domain from Saphexavirus

    Get PDF
    Background: Phage therapy (PT), as a method to treat bacterial infections, needs identification of bacteriophages targeting specific pathogenic host. Enterococcus faecalis, a Gram-positive coccus resident in the human gastrointestinal tract, may become pathogenic in hospitalized patients showing acquired resistance to vancomycin and thus representing a possible target for PT. Materials and Methods: We isolated four phages that infect E. faecalis and characterized them by host range screening, transmission electron microscopy, and genome sequencing. We also identified and three-dimensional modeled a new hyaluronidase enzyme. Results: The four phages belong to Siphoviridae family: three Efquatrovirus (namely vB_EfaS_TV51, vB_EfaS_TV54, and vB_EfaS_TV217) and one Saphexavirus (vB_EfaS_TV16). All of them are compatible with lytic cycle. vB_EfaS_TV16 moreover presents a gene encoding for a hyaluronidase enzyme. Conclusions: The identified phages show features suggesting their useful application in PT, particularly the Saphexavirus that may be of enhanced relevance in PT because of its potential biofilm-digestion capability

    Evolutionary-new centromeres preferentially emerge within gene deserts

    Get PDF
    A study identifying genomic restructuring and the absence of genes as conditions permissive for the seeding of new centromeres in primate

    Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor?

    Get PDF
    One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3’ end of the IgH gene locus (3’RR). Animal models have demonstrated an essential role of the 3’RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3’RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3’RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3’RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3’RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2

    The Genomic Organisation of the TRA/TRD Locus Validates the Peculiar Characteristics of Dromedary δ-Chain Expression

    Get PDF
    The role of gamma/delta T cells in vertebrate immunity is still an unsolved puzzle. Species such as humans and mice display a low percentage of these T lymphocytes (i.e., “ gamma/delta low species”) with a restricted diversity of gamma/delta T cell receptors (TR). Conversely, artiodactyl species (i.e., “ gamma/delta high species”) account for a high proportion of gamma/delta T cells with large gamma and delta chain repertoires. The genomic organisation of the gamma TR (TRG) and delta (TRD) loci has been determined in sheep and cattle, noting that a wide number of germline genes that encode for gamma and delta chains characterise their genomes. Taking advantage of the current improved version of the genome assembly, we have investigated the genomic structure and gene content of the dromedary TRD locus, which, as in the other mammalian species, is nested within the TR alpha (TRA) genes. The most remarkable finding was the identification of a very limited number of variable germline genes (TRDV) compared to sheep and cattle, which supports our previous expression analyses for which the somatic hypermutation mechanism is able to enlarge and diversify the primary repertoire of dromedary delta chains. Furthermore, the comparison between genomic and expressed sequences reveals that D genes, up to four incorporated in a transcript, greatly contribute to the increased diversity of the dromedary delta chain antigen binding-site

    Identification of pigmented Serratia marcescens symbiotically associated with Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae)

    Get PDF
    To characterize red pigment-producing bacteria (RPPB) regularly released during oviposition by red palm weevil (RPW), RPPB were recovered from eggs deposited in apples supplied as substrate for oviposition. The presence of RPPB was also detected from gut, the reproductive apparatus of dissected adult and virgin insects and from pupal cases collected within infested palms. RPPB were also identified all along the tissue of these palms. Analysis of the 16S rDNA, gyrB, rpoB, recA, and groEL sequences assigned RPPB to the species Serratia marcescens. RPPB exhibited an antimicrobial activity assessed by the agar well diffusion method against a number of gram-positive and gram-negative bacteria. In this study, we first report the identification of a red pigment-producing S. marcescens as extracellular symbiont of RPW. Route of transmission, detection within different organs, and a wide spread along the infested palm tissue, suggested S. marcescens is present as extracellular symbiont in different developmental stages of the RPW. Additionally, the antimicrobial activity exhibited versus Bacillus spp., Paenibacillus spp., and Lysinibacillus spp., reported as insect pathogens and potential candidates for biocontrol agents, could ascribe for S. marcescens a potential protective role

    Evolutionary History of Chromosome 20

    Get PDF
    The evolutionary history of human chromosome 20 in primates was investigated using a panel of human BAC/PAC probes spaced along the chromosome. Oligonucleotide primers derived from the sequence of each human clone were used to screen horse, cat, pig, and black lemur BAC libraries to assemble, for each species, a panel of probes mapping to chromosomal loci orthologous to the loci encompassed by the human BACs. This approach facilitated marker-order comparison aimed at defining marker arrangement in primate ancestor. To this goal, we also took advantage of the mouse and rat draft sequences. The almost perfect colinearity of chromosome 20 sequence in humans and mouse could be interpreted as evidence that their form was ancestral to primates. Contrary to this view, we found that horse, macaque, and two New World monkeys share the same marker-order arrangement from which the human and mouse forms can be derived, assuming similar but distinct inversions that fully account for the small difference in marker arrangement between humans and mouse. The evolutionary history of this chromosome unveiled also two centromere repositioning events in New World monkey species

    Uncertainty principle of genetic information in a living cell

    Get PDF
    BACKGROUND: Formal description of a cell's genetic information should provide the number of DNA molecules in that cell and their complete nucleotide sequences. We pose the formal problem: can the genome sequence forming the genotype of a given living cell be known with absolute certainty so that the cell's behaviour (phenotype) can be correlated to that genetic information? To answer this question, we propose a series of thought experiments. RESULTS: We show that the genome sequence of any actual living cell cannot physically be known with absolute certainty, independently of the method used. There is an associated uncertainty, in terms of base pairs, equal to or greater than ÎĽs (where ÎĽ is the mutation rate of the cell type and s is the cell's genome size). CONCLUSION: This finding establishes an "uncertainty principle" in genetics for the first time, and its analogy with the Heisenberg uncertainty principle in physics is discussed. The genetic information that makes living cells work is thus better represented by a probabilistic model rather than as a completely defined object

    Evolutionary history of chromosome 11 featuring four distinct centromere repositioning events in Catarrhini.

    Get PDF
    Abstract Panels of BAC clones used in FISH experiments allow a detailed definition of chromosomal marker arrangement and orientation during evolution. This approach has disclosed the centromere repositioning phenomenon, consisting in the activation of a novel, fully functional centromere in an ectopic location, concomitant with the inactivation of the old centromere. In this study, appropriate panels of BAC clones were used to track the chromosome 11 evolutionary history in primates and nonprimate boreoeutherian mammals. Chromosome 11 synteny was found to be highly conserved in both primate and boreoeutherian mammalian ancestors. Amazingly, we detected four centromere repositioning events in primates (in Old World monkeys, in gibbons, in orangutans, and in the Homo–Pan–Gorilla (H-P-G) clade ancestor), and one in Equidae. Both H-P-G and Lar gibbon novel centromeres were flanked by large duplicons with high sequence similarity. Outgroup species analysis revealed that this duplicon was absent in phylogenetically more distant primates. The chromosome 11 ancestral centromere was probably located near the HSA11q telomere. The domain of this inactivated centromere, in humans, is almost devoid of segmental duplications. An inversion occurred in chromosome 11 in the common ancestor of H-P-G. A large duplicon, again absent in outgroup species, was found located adjacent to the inversion breakpoints. In Hominoidea, almost all the five largest duplicons of this chromosome appeared involved in significant evolutionary architectural changes

    Bone marrow ectopic expression of a non-coding RNA in childhood T-cell acute lymphoblastic leukemia with a novel t(2;11)(q11.2;p15.1) translocation

    Get PDF
    Chromosomal translocations play a crucial role in tumorigenesis, often resulting in the formation of chimeric genes or in gene deregulation through position effects. T-cell acute lymphoblastic leukemia (T-ALL) is associated with a large number of such rearrangements. We report the ectopic expression of the 3' portion of EST DA926692 in the bone marrow of a childhood T-ALL case showing a t(2;11)(q11.2;p15.1) translocation as the sole chromosome abnormality. The breakpoints, defined at the sequence level, mapped within HPS5 ( Hermansky Pudlak syndrome 5) intron 1 at 11p15.1, and DA926692 exon 2 at 2q11.2. The translocation was accompanied by a submicroscopic inversion that brought the two genes into the same transcriptional orientation. No chimeric trancript was detected. Interestingly, Real-Time Quantitative (RQ)-PCR detected, in the patient's bone marrow, expression of a 173 bp product corresponding to the 3' portion of DA926692. Samples from four T-ALL cases with a normal karyotype and normal bone marrow used as controls were negative. It might be speculated that the juxtaposition of this genomic segment to the CpG island located upstream HPS5 activated DA92669 expression. RQ-PCR analysis showed expression positivity in 6 of 23 human tissues examined. Bioinformatic analysis excluded that this small non-coding RNA is a precursor of micro-RNA, although it is conceivable that it has a different, yet unknown, functional role. To the best of our knowledge, this is the first report, in cancer, of the activation of a small non-coding RNA as a result of a chromosomal translocation
    • …
    corecore