343 research outputs found

    Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor?

    Get PDF
    One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3’ end of the IgH gene locus (3’RR). Animal models have demonstrated an essential role of the 3’RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3’RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3’RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3’RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3’RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2

    Development of Lumped Element Kinetic Inductance Detectors for the W-Band

    Full text link
    We are developing a Lumped Element Kinetic Inductance Detector (LEKID) array able to operate in the W-band (75-110 GHz) in order to perform ground-based Cosmic Microwave Background (CMB) and mm-wave astronomical observations. The W-band is close to optimal in terms of contamination of the CMB from Galactic synchrotron, free-free, and thermal interstellar dust. In this band, the atmosphere has very good transparency, allowing interesting ground-based observations with large (>30 m) telescopes, achieving high angular resolution (<0.4 arcmin). In this work we describe the startup measurements devoted to the optimization of a W-band camera/spectrometer prototype for large aperture telescopes like the 64 m SRT (Sardinia Radio Telescope). In the process of selecting the best superconducting film for the LEKID, we characterized a 40 nm thick Aluminum 2-pixel array. We measured the minimum frequency able to break CPs (i.e. hν=2Δ(Tc)=3.5kBTch\nu=2\Delta\left(T_{c}\right)=3.5k_{B}T_{c}) obtaining ν=95.5\nu=95.5 GHz, that corresponds to a critical temperature of 1.31 K. This is not suitable to cover the entire W-band. For an 80 nm layer the minimum frequency decreases to 93.2 GHz, which corresponds to a critical temperature of 1.28 K; this value is still suboptimal for W-band operation. Further increase of the Al film thickness results in bad performance of the detector. We have thus considered a Titanium-Aluminum bi-layer (10 nm thick Ti + 25 nm thick Al, already tested in other laboratories), for which we measured a critical temperature of 820 mK and a cut-on frequency of 65 GHz: so this solution allows operation in the entire W-band.Comment: 16th International Workshop on Low Temperature Detectors, Grenoble 20-24 July 2015, Journal of Low Temperature Physics, Accepte

    Analysis of four new enterococcus faecalis phages and modeling of a hyaluronidase catalytic domain from saphexavirus

    Get PDF
    Background: Phage therapy (PT), as a method to treat bacterial infections, needs identification of bacteriophages targeting specific pathogenic host. Enterococcus faecalis, a Gram-positive coccus resident in the human gastrointestinal tract, may become pathogenic in hospitalized patients showing acquired resistance to vancomycin and thus representing a possible target for PT. Materials and Methods: We isolated four phages that infect E. faecalis and characterized them by host range screening, transmission electron microscopy, and genome sequencing. We also identified and three-dimensional modeled a new hyaluronidase enzyme. Results: The four phages belong to Siphoviridae family: three Efquatrovirus (namely vB_EfaS_TV51, vB_EfaS_TV54, and vB_EfaS_TV217) and one Saphexavirus (vB_EfaS_TV16). All of them are compatible with lytic cycle. vB_EfaS_TV16 moreover presents a gene encoding for a hyaluronidase enzyme. Conclusions: The identified phages show features suggesting their useful application in PT, particularly the Saphexavirus that may be of enhanced relevance in PT because of its potential biofilm-digestion capability

    Ash leachates from some recent eruptions of Mount Etna (Italy) and Popocatépetl (Mexico) volcanoes and their impact on amphibian living freshwater organisms

    Get PDF
    Leaching experiments were carried out on fresh ash samples from Popocatépetl 2012, Etna 2011, and Etna 2012 eruptions, in order to investigate the release of compounds in both double-deionized and lake (Lake Ohrid, FYR of Macedonia) waters. The experiments were carried out using different grain sizes and variable stirring times (from 30 min to 7 days). Results were discussed in the light of changing pH and release of compounds for the different leachates. In particular, Etna samples induced alkalinization, and Popocatépetl samples induced acidification of the corresponding leachates. The release of different elements does not show correlation with the stirring time, with the measured maximum concentrations reached in the first hours of washing. General inverse correlation with grain size was observed only for Na+, K+, Cl-, Ca2+, Mg2+, SO2-4 , and Mn2+, while the other analysed elements show a complex, scattering relationship with grain size. Geochemical modelling highlights leachates' saturation only for F and Si, with Popocatépetl samples sometimes showing saturation in Fe. The analysed leachates are classified as undrinkable for humans on the basis of European laws, due to excess in F-, Mn2+, Fe, and SO2-4 (the latter only for Popocatépetl samples). Finally, the Etna 2012 and Popocatépetl leachates were used for toxicity experiments on living biota (Xenopus laevis). They are mildly toxic, and no significant differences exist between the toxic profiles of the two leachates. In particular, no significant embryo mortality was observed; while even at high dilutions, the leachates produced more than 20% of malformed larvae

    The genomic organisation of the tra/trd locus validates the peculiar characteristics of dromedary δ-chain expression

    Get PDF
    The role of γδ T cells in vertebrate immunity is still an unsolved puzzle. Species such as humans and mice display a low percentage of these T lymphocytes (i.e., “γδ low species”) with a restricted diversity of γδ T cell receptors (TR). Conversely, artiodactyl species (i.e., “γδ high species”) account for a high proportion of γδ T cells with large γ and δ chain repertoires. The genomic organisation of the TR γ (TRG) and δ (TRD) loci has been determined in sheep and cattle, noting that a wide number of germline genes that encode for γ and δ chains characterise their genomes. Taking advantage of the current improved version of the genome assembly, we have investigated the genomic structure and gene content of the dromedary TRD locus, which, as in the other mammalian species, is nested within the TR α (TRA) genes. The most remarkable finding was the identification of a very limited number of variable germline genes (TRDV) compared to sheep and cattle, which supports our previous expression analyses for which the somatic hypermutation mechanism is able to enlarge and diversify the primary repertoire of dromedary δ chains. Furthermore, the comparison between genomic and expressed sequences reveals that D genes, up to four incorporated in a transcript, greatly contribute to the increased diversity of the dromedary δ chain antigen binding-site

    A Bayesian Network for Flood Detection Combining SAR Imagery and Ancillary Data

    Get PDF
    Accurate flood mapping is important for both planning activities during emergencies and as a support for the successive assessment of damaged areas. A valuable information source for such a procedure can be remote sensing synthetic aperture radar (SAR) imagery. However, flood scenarios are typical examples of complex situations in which different factors have to be considered to provide accurate and robust interpretation of the situation on the ground. For this reason, a data fusion approach of remote sensing data with ancillary information can be particularly useful. In this paper, a Bayesian network is proposed to integrate remotely sensed data, such as multitemporal SAR intensity images and interferometric-SAR coherence data, with geomorphic and other ground information. The methodology is tested on a case study regarding a flood that occurred in the Basilicata region (Italy) on December 2013, monitored using a time series of COSMO-SkyMed data. It is shown that the synergetic use of different information layers can help to detect more precisely the areas affected by the flood, reducing false alarms and missed identifications which may affect algorithms based on data from a single source. The produced flood maps are compared to data obtained independently from the analysis of optical images; the comparison indicates that the proposed methodology is able to reliably follow the temporal evolution of the phenomenon, assigning high probability to areas most likely to be flooded, in spite of their heterogeneous temporal SAR/InSAR signatures, reaching accuracies of up to 89%

    Antimicrobial resistance gene shuffling and a three-element mobilisation system in the monophasic Salmonella typhimurium strain ST1030

    Get PDF
    In this study we describe the genetic elements and the antimicrobial resistance units (RUs) harboured by the Salmonella Typhimurium monophasic variant 1,4,[5],12:i:- strain ST1030. Of the three identified RUs two were chromosomal, RU1 (IS26-blaTEM-1-IS26-strAB-sul2- IS26) and RU2 (IS26-tetR(B)-tetA(B)-ΔIS26), and one, RU3 (a sul3-associated class 1 integron with cassette array dfrA12-orfF-aadA2-cmlA1-aadA1), was embedded in a Tn21-derived element harboured by the conjugative I1 plasmid pST1030-1A. IS26 elements mediated the antimicrobial resistance gene (ARG) shuffling and this gave rise to pST1030-1A derivatives with different sets of ARGs. ST1030 also harboured two ColE1-like plasmids of which one, pST1030-2A, was mobilisable and the target of an intracellular translocation of the Tn21-derived element; the second (pST1030-3) was an orphan mob-associated oriT plasmid co-transferred with pST1030-1A and pST1030-2A. pST1030-2A and pST1030-3 also carried a parA gene and a type III restriction modification system, respectively. Overall analysis of our data reinforces the role played by IS26, Tn21-derived elements and non-conjugative plasmids in the spread of ARGs and supplies the first evidence, at least in Salmonella, for the identification of a natural isolate harbouring a three-element mobilisation system in the same cell

    The Organization of the Pig T-Cell Receptor Îł (TRG) Locus Provides Insights into the Evolutionary Patterns of the TRG Genes across Cetartiodactyla

    Get PDF
    The domestic pig (Sus scrofa) is a species representative of the Suina, one of the four suborders within Cetartiodactyla. In this paper, we reported our analysis of the pig TRG locus in comparison with the loci of species representative of the Ruminantia, Tylopoda, and Cetacea suborders. The pig TRG genomic structure reiterates the peculiarity of the organization of Cetartiodactyla loci in TRGC "cassettes", each containing the basic V-J-J-C unit. Eighteen genes arranged in four TRGC cassettes, form the pig TRG locus. All the functional TRG genes were expressed, and the TRGV genes preferentially rearrange with the TRGJ genes within their own cassette, which correlates the diversity of the Îł-chain repertoire with the number of cassettes. Among them, the TRGC5, located at the 5' end of the locus, is the only cassette that retains a marked homology with the corresponding TRGC cassettes of all the analyzed species. The preservation of the TRGC5 cassette for such a long evolutionary time presumes a highly specialized function of its genes, which could be essential for the survival of species. Therefore, the maintenance of this cassette in pigs confirms that it is the most evolutionarily ancient within Cetartiodactyla, and it has undergone a process of duplication to give rise to the other TRGC cassettes in the different artiodactyl species in a lineage-specific manner
    • …
    corecore