31 research outputs found

    Optimization of flotation assay conditions for syndapin binding to phosphatidic acid containing liposomes

    Get PDF
    Flotation is one of the best method for preliminary identification of protein-lipid interactions. In most widely used approach it utilizes large unilamellar vesicles, that are excellent models of freestanding membranes and do not require any additional components, like solid supports or beads that are needed in other methods commonly used for protein-lipid binding studies. Here we present results obtained during our studies on phosphatidic acid - syndapin interactions and discuss some technical aspects of this method underlying how relatively small changes in the conditions can influence the results

    The role of hydrophobic interactions in ankyrin–spectrin complex formation

    Get PDF
    AbstractSpectrin and ankyrin are the key components of the erythrocyte cytoskeleton. The recently published crystal structure of the spectrin–ankyrin complex has indicated that their binding involves complementary charge interactions as well as hydrophobic interactions. However, only the former is supported by biochemical evidence. We now show that nonpolar interactions are important for high affinity complex formation, excluding the possibility that the binding is exclusively mediated by association of distinctly charged surfaces. Along these lines we report that substitution of a single hydrophobic residue, F917S in ankyrin, disrupts the structure of the binding site and leads to complete loss of spectrin affinity. Finally, we present data showing that minimal ankyrin binding site in spectrin is formed by helix 14C together with the loop between helices 15 B/C

    Key Amino Acid Residues of Ankyrin-Sensitive Phosphatidylethanolamine/Phosphatidylcholine-Lipid Binding Site of βI-Spectrin

    Get PDF
    It was shown previously that an ankyrin-sensitive, phosphatidylethanolamine/phosphatidylcholine (PE/PC) binding site maps to the N-terminal part of the ankyrin-binding domain of β-spectrin (ankBDn). Here we have identified the amino acid residues within this domain which are responsible for recognizing monolayers and bilayers composed of PE/PC mixtures. In vitro binding studies revealed that a quadruple mutant with substituted hydrophobic residues W1771, L1775, M1778 and W1779 not only failed to effectively bind PE/PC, but its residual PE/PC-binding activity was insensitive to inhibition with ankyrin. Structure prediction and analysis, supported by in vitro experiments, suggests that “opening” of the coiled-coil structure underlies the mechanism of this interaction. Experiments on red blood cells and HeLa cells supported the conclusions derived from the model and in vitro lipid-protein interaction results, and showed the potential physiological role of this binding. We postulate that direct interactions between spectrin ankBDn and PE-rich domains play an important role in stabilizing the structure of the spectrin-based membrane skeleton

    Building Blocks to Design Liposomal Delivery Systems

    No full text
    The flexibility of liposomal carriers does not just simply rely on their capability to encapsulate various types of therapeutic substances, but also on the large array of components used for designing liposome-based nanoformulations. Each of their components plays a very specific role in the formulation and can be easily replaced whenever a different therapeutic effect is desired. It is tempting to describe this by an analogy to Lego blocks, since a whole set of structures, differing in their features, can be designed using a certain pool of blocks. In this review, we focus on different design strategies, where a broad variety of liposomal components facilitates the attainment of straightforward control over targeting and drug release, which leads to the design of the most promising systems for drug delivery. The key aspects of this block-based architecture became evident after its implementation in our recent works on liposomal carriers of antisense oligonucleotides and statins, which are described in the last chapter of this review

    Selectivity of mTOR-Phosphatidic Acid Interactions Is Driven by Acyl Chain Structure and Cholesterol

    No full text
    The need to gain insights into the molecular details of peripheral membrane proteins’ specificity towards phosphatidic acid (PA) is undeniable. The variety of PA species classified in terms of acyl chain length and saturation translates into a complicated, enigmatic network of functional effects that exert a critical influence on cell physiology. As a consequence, numerous studies on the importance of phosphatidic acid in human diseases have been conducted in recent years. One of the key proteins in this context is mTOR, considered to be the most important cellular sensor of essential nutrients while regulating cell proliferation, and which also appears to require PA to build stable and active complexes. Here, we investigated the specific recognition of three physiologically important PA species by the mTOR FRB domain in the presence or absence of cholesterol in targeted membranes. Using a broad range of methods based on model lipid membrane systems, we elucidated how the length and saturation of PA acyl chains influence specific binding of the mTOR FRB domain to the membrane. We also discovered that cholesterol exerts a strong modulatory effect on PA-FRB recognition. Our data provide insight into the molecular details of some physiological effects reported previously and reveal novel mechanisms of fine-tuning the signaling cascades dependent on PA

    Attaching a spin to a protein - site-directed spin labeling in structural biology

    No full text
    Site-directed spin labeling and electron paramagnetic resonance spectroscopy have recently experienced an outburst of multiple applications in protein science. Numerous interesting strategies have been introduced for determining the structure of proteins and its conformational changes at the level of the backbone fold. Moreover, considerable technical development in the field makes the technique an attractive approach for the study of structure and dynamics of membrane proteins and large biological complexes at physiological conditions. This review focuses on a brief description of site-directed spin labeling-derived techniques in the context of their recent applications

    Phosphatidic acid - a simple phospholipid with multiple faces

    No full text
    Phosphatidic acid (PA) is the simplest glycerophospholipid naturally occurring in living organisms, and even though its content among other cellular lipids is minor, it is drawing more and more attention due to its multiple biological functions. PA is a precursor for other phospholipids, acts as a lipid second messenger and, due to its structural properties, is also a modulator of membrane shape. Although much is known about interaction of PA with its effectors, the molecular mechanisms remain unresolved to a large degree. Throughout many of the well-characterized PA cellular sensors, no conserved binding domain can be recognized. Moreover, not much is known about the cellular dynamics of PA and how it is distributed among subcellular compartments. Remarkably, PA can play distinct roles within each of these compartments. For example, in the nucleus it behaves as a mitogen, influencing gene expression regulation, and in the Golgi membrane it plays a role in membrane trafficking. Here, we discuss how a biophysical experimental approach enabled PA behavior to be described in the context of a lipid bilayer and to what extent various physicochemical conditions may modulate the functional properties of this lipid. Understanding these aspects would help to unravel specific mechanisms of PA-driven membrane transformations and protein recruitment and thus would lead to a clearer picture of the biological role of PA

    Spherocytosis-Related L1340P Mutation in Ankyrin Affects Its Interactions with Spectrin

    No full text
    Previously, we reported a new missense mutation in the ANK1 gene that correlated with the hereditary spherocytosis phenotype. This mutation, resulting in L1340P substitution (HGMD CM149731), likely leads to the changes in the conformation of the ankyrin ZZUD domain important for ankyrin binding to spectrin. Here, we report the molecular and physiological effects of this mutation. First, we assessed the binding activity of human β-spectrin to the mutated ZZUDL1340P domain of ankyrin using two different experimental approaches—the study of association and dissociation responses of the spectrin–ankyrin binding domain and a sedimentation assay. In addition, we documented the changes in morphology caused by the overexpressed ankyrin ZZUD domain in human cell models. Our results prove the key role of the L1340 aa residue for the correct alignment of the ZZUD domain of ankyrin, which results in binding the latter with spectrin within the erythrocyte membrane. Replacing L1340 with a proline residue disrupts the spectrin-binding activity of ankyrin

    MPP1 Determines the Mobility of Flotillins and Controls the Confinement of Raft-Associated Molecules

    No full text
    MPP1 (membrane palmitoylated protein 1) belongs to the MAGUK (membrane-associated guanylate kinase homologs) scaffolding protein family. These proteins organize molecules into complexes, thereby maintaining the structural heterogeneity of the plasma membrane (PM). Our previous results indicated that direct, high-affinity interactions between MPP1 and flotillins (raft marker proteins) display dominant PM-modulating capacity in erythroid cells. In this study, with high-resolution structured illuminated imaging, we investigated how these complexes are organized within erythroid cells on the nanometer scale. Furthermore, using other spectroscopic techniques, namely fluorescence recovery after photobleaching (FRAP) and spot-variation fluorescence correlation spectroscopy (svFCS), we revealed that MPP1 acts as a key raft-capturing molecule, regulating temporal immobilization of flotillin-based nanoclusters, and controls local concentration and confinement of sphingomyelin and Thy-1 in raft nanodomains. Our data enabled us to uncover molecular principles governing the key involvement of MPP1-flotillin complexes in the dynamic nanoscale organization of PM of erythroid cells
    corecore