15 research outputs found

    Biochemische Charakterisierung von Histon-Methyltransferasen aus Drosophila melanogaster

    Get PDF
    In der vorliegenden Arbeit wurden die beiden Histon-Methyltransferasen Su(var)3-9 und E(Z) aus Drosophila melanogaster charakterisiert. Die Histonmethylierung als Modifikation war schon lĂ€nger bekannt gewesen, bis zum Jahr 2000 war jedoch vor allem die Acetylierung etwas genauer untersucht worden. Su(var)3-9 war die einzige bekannte Histon-Lysin-Methyltransferase, als diese Arbeit begonnen wurde. Zur Charakterisierung wurde das myc-getagte Enzym aus Drosophila-Kernextrakt durch AffinitĂ€tschromatographie aufgereinigt und zunĂ€chst die SubstratspezifitĂ€t festgestellt. Wie das humane Enzym Suv39H1 methyliert es ebenfalls spezifisch H3-K9 (Lysin 9 im Histon H3). Das aus den Kernextrakten aufgereinigte Enzym besitzt aber auch die FĂ€higkeit, ein an H3-K9 prĂ€acetyliertes Substrat zu methylieren. Die Vermutung, dass Su(var)3-9 mit einer Histondeacetylase assoziiert ist, konnte durch Verwendung von TSA als HDAC-Inhibitor bestĂ€tigt werden. Es stellte sich heraus, dass HDAC1 (Rpd3) mit Su(var)3-9 assoziiert ist. Um das Enzym besser untersuchen zu können, wurde es als VolllĂ€ngenprotein und als Deletionsmutante in E. coli exprimiert. Die Aufreinigung des rekombinanten Enzyms sowie seine Lagerbedingungen wurden optimiert. Das VolllĂ€ngenprotein Su(var)3-9 liegt – wie durch Gelfiltration festgestellt - als Dimer vor, die Interaktion mit sich selbst ist ĂŒber den N-Terminus vermittelt. Su(var)3-9 bindet an sein eigenes, bereits methyliertes Substrat. Dies wurde an Peptiden untersucht, die den ersten 20 AminosĂ€uren des Histons H3 entsprechen, und entweder an Lysin 9 dimethyliert oder unmodifiziert waren. Die Interaktion mit dem methylierten Substrat ist auf die ChromodomĂ€ne von Su(var)3-9 zurĂŒckzufĂŒhren, ist jedoch schwĂ€cher als die Wechselwirkung von HP1 mit methyliertem H3-K9. Des weiteren wurde eine Drosophila-Zelllinie stabil mit Su(var)3-9 transfiziert. Das ĂŒberexprimierte Protein ist jedoch nur schwach aktiv. Die Tatsachen, dass Su(var)3-9 mit HDAC1 interagiert sowie mit seinem eigenen Substrat assoziiert, ermöglichen die Aufstellung von Hypothesen ĂŒber die bis jetzt kaum erhellte Ausbreitung von Heterochromatin in euchromatische Bereiche. Durch die Wechselwirkung mit der Deacetylase könnte Su(var)3-9 auch in aktiv transkribierte Bereiche vordringen und diese methylieren. Die Acetylierung, Zeichen fĂŒr aktive Transkription, wĂŒrde durch die Methylierung ersetzt werden. Die Interaktion mit seinem umgesetzten Substrat könnte verhindern, dass das Enzym sich nach der Reaktion entfernt, vielmehr könnte Su(var)3-9 entlang eines DNA-Stranges sukzessive alle Nukleosomen methylieren. Die darauffolgende Bindung von HP1 an methyliertes H3-K9 könnte den heterochromatischen Charakter des Chromatins verstĂ€rken und fĂŒr lĂ€ngere Zeit festlegen. Aus Drosophila-Kernextrakten gelang es weiterhin, den E(Z)/ESC-Komplex ĂŒber SĂ€ulenchromatographie aufzureinigen. Dieser enthĂ€lt neben E(Z), ESC, p55 und Rpd3 auch Su(z)12. E(Z), ESC und Su(z)12 gehören der Polycomb-Gruppe an. Deren Funktion ist die dauerhafte Repression der homöotischen Gene. Sie spielen daher eine wichtige Rolle im „ZellgedĂ€chtnis“ wĂ€hrend der frĂŒhen Entwicklung von Drosophila. Es konnte gezeigt werden, dass der E(Z)/ESC-Komplex Lysin 9 sowie Lysin 27 im Histon H3 methyliert. Außerdem wurde in vitro ein Teilkomplex aus rekombinantem E(Z), p55 und ESC rekonstituiert, der das Histon H3 methylieren kann. Ein Teilkomplex, der E(Z) mit mutierter SET-DomĂ€ne enthĂ€lt, ist nicht in der Lage, H3 zu methylieren. Die Vorhersage, dass E(Z) aufgrund seiner SET-DomĂ€ne eine Methyltransferase sein mĂŒsse, konnte durch vorliegende Untersuchungen bestĂ€tigt werden. Polycomb ist ein weiteres Protein aus der Polycomb-Gruppe. In dieser Arbeit konnte gezeigt werden, dass dieses Protein spezifisch an das Histon H3 bindet, das an K27 trimethyliert ist. Polycomb besitzt wie HP1 eine ChromodomĂ€ne. Aus den vorliegenden Daten kann folgendes Modell aufgestellt werden: Nach der Methylierung von H3-K9 sowie H3-K27 durch den E(Z)/ESC-Komplex in homöotischen Genen, die schon abgeschaltet sind und weiterhin reprimiert werden mĂŒssen, bindet Polycomb an dieses Methylierungsmuster. Polycomb befindet sich in einem großen Komplex mit weiteren Polycomb-Gruppen-Proteinen. Die Bindung dieses Komplexes an Chromatin könnte ein denkbarer Mechanismus sein, wie die dauerhafte Repression der homöotischen Gene vermittelt wird. Um den E(Z)/ESC-Komplex genauer untersuchen zu können, wurden Viren fĂŒr das Baculosystem hergestellt, so dass eine Einzel- oder auch Coexpression der Proteine möglich ist. Die AktivitĂ€t von E(Z), das im Baculosystem exprimiert wurde, ist nicht besonders hoch. Es bindet unter den in dieser Arbeit verwendeten Bedingungen weder an DNA, noch an Histone noch an H3-Peptide, die methyliert sind. Innerhalb des E(Z)/ESC-Komplexes bindet E(Z) an p55, Rpd3, ESC sowie Su(z)12. Su(z)12 interagiert mit p55, Rpd3 und E(Z). Die weiteren Interaktionen werden am besten durch eine bildliche Darstellung (siehe Abb. 86) vermittelt. In einem Luciferase-Assay wurde eine repressive Wirkung von E(Z) festgestellt. Dieses Experiment bedarf allerdings eines aktivierten Systems. Ferner muss durch Mutationsanalysen sichergestellt werden, dass die repressive Wirkung auf die Methyltransferase-AktivitĂ€t von E(Z) zurĂŒckzufĂŒhren ist. KĂŒrzlich wurde entdeckt, dass E(Z) sowie Su(z)12 in verschiedenen Tumoren ĂŒberexprimiert sind. Noch ist weder deren Funktion in den Tumorzellen klar, noch weiss man, ob die Überexpression der Grund oder eine Folge der Tumorbildung ist, noch kennt man alle Zielgene, die durch eine Überexpression von E(Z) und Su(z)12 beeinflusst werden. In nĂ€chster Zeit sind hier Einsichten in die Wirkungsweise von E(Z), Su(z)12 und anderen Polycomb-Gruppen-Proteinen zu erwarten

    Respiratory chain deficiency in nonmitochondrial disease.

    Get PDF
    OBJECTIVE: In this study, we report 5 patients with heterogeneous phenotypes and biochemical evidence of respiratory chain (RC) deficiency; however, the molecular diagnosis is not mitochondrial disease. METHODS: The reported patients were identified from a cohort of 60 patients in whom RC enzyme deficiency suggested mitochondrial disease and underwent whole-exome sequencing. RESULTS: Five patients had disease-causing variants in nonmitochondrial disease genes ORAI1, CAPN3, COLQ, EXOSC8, and ANO10, which would have been missed on targeted next-generation panels or on MitoExome analysis. CONCLUSIONS: Our data demonstrate that RC abnormalities may be secondary to various cellular processes, including calcium metabolism, neuromuscular transmission, and abnormal messenger RNA degradation

    Nuclear factors involved in mitochondrial translation cause a subgroup of combined respiratory chain deficiency.

    Get PDF
    Mutations in several mitochondrial DNA and nuclear genes involved in mitochondrial protein synthesis have recently been reported in combined respiratory chain deficiency, indicating a generalized defect in mitochondrial translation. However, the number of patients with pathogenic mutations is small, implying that nuclear defects of mitochondrial translation are either underdiagnosed or intrauterine lethal. No comprehensive studies have been reported on large cohorts of patients with combined respiratory chain deficiency addressing the role of nuclear genes affecting mitochondrial protein synthesis to date. We investigated a cohort of 52 patients with combined respiratory chain deficiency without causative mitochondrial DNA mutations, rearrangements or depletion, to determine whether a defect in mitochondrial translation defines the pathomechanism of their clinical disease. We followed a combined approach of sequencing known nuclear genes involved in mitochondrial protein synthesis (EFG1, EFTu, EFTs, MRPS16, TRMU), as well as performing in vitro functional studies in 22 patient cell lines. The majority of our patients were children (<15 years), with an early onset of symptoms <1 year of age (65%). The most frequent clinical presentation was mitochondrial encephalomyopathy (63%); however, a number of patients showed cardiomyopathy (33%), isolated myopathy (15%) or hepatopathy (13%). Genomic sequencing revealed compound heterozygous mutations in the mitochondrial transfer ribonucleic acid modifying factor (TRMU) in a single patient only, presenting with early onset, reversible liver disease. No pathogenic mutation was detected in any of the remaining 51 patients in the other genes analysed. In vivo labelling of mitochondrial polypeptides in 22 patient cell lines showed overall (three patients) or selective (four patients) defects of mitochondrial translation. Immunoblotting for mitochondrial proteins revealed decreased steady state levels of proteins in some patients, but normal or increased levels in others, indicating a possible compensatory mechanism. In summary, candidate gene sequencing in this group of patients has a very low detection rate (1/52), although in vivo labelling of mitochondrial translation in 22 patient cell lines indicate that a nuclear defect affecting mitochondrial protein synthesis is responsible for about one-third of combined respiratory chain deficiencies (7/22). In the remaining patients, the impaired respiratory chain activity is most likely the consequence of several different events downstream of mitochondrial translation. Clinical classification of patients with biochemical analysis, genetic testing and, more importantly, in vivo labelling and immunoblotting of mitochondrial proteins show incoherent results, but a systematic review of these data in more patients may reveal underlying mechanisms, and facilitate the identification of novel factors involved in combined respiratory chain deficiency

    What is influencing the phenotype of the common homozygous polymerase-Îł mutation p.Ala467Thr?

    Get PDF
    Polymerase-Îł (POLG) is a major human disease gene and may account for up to 25% of all mitochondrial diseases in the UK and in Italy. To date, >150 different pathogenic mutations have been described in POLG. Some mutations behave as both dominant and recessive alleles, but an autosomal recessive inheritance pattern is much more common. The most frequently detected pathogenic POLG mutation in the Caucasian population is c.1399G>A leading to a p.Ala467Thr missense mutation in the linker domain of the protein. Although many patients are homozygous for this mutation, clinical presentation is highly variable, ranging from childhood-onset Alpers-Huttenlocher syndrome to adult-onset sensory ataxic neuropathy dysarthria and ophthalmoparesis. The reasons for this are not clear, but familial clustering of phenotypes suggests that modifying factors may influence the clinical manifestation. In this study, we collected clinical, histological and biochemical data from 68 patients carrying the homozygous p.Ala467Thr mutation from eight diagnostic centres in Europe and the USA. We performed DNA analysis in 44 of these patients to search for a genetic modifier within POLG and flanking regions potentially involved in the regulation of gene expression, and extended our analysis to other genes affecting mitochondrial DNA maintenance (POLG2, PEO1 and ANT1). The clinical presentation included almost the entire phenotypic spectrum of all known POLG mutations. Interestingly, the clinical presentation was similar in siblings, implying a genetic basis for the phenotypic variability amongst homozygotes. However, the p.Ala467Thr allele was present on a shared haplotype in each affected individual, and there was no correlation between the clinical presentation and genetic variants in any of the analysed nuclear genes. Patients with mitochondrial DNA haplogroup U developed epilepsy significantly less frequently than patients with any other mitochondrial DNA haplotype. Epilepsy was reported significantly more frequently in females than in males, and also showed an association with one of the chromosomal markers defining the POLG haplotype. In conclusion, our clinical results show that the homozygous p.Ala467Thr POLG mutation does not cause discrete phenotypes, as previously suggested, but rather there is a continuum of clinical symptoms. Our results suggest that the mitochondrial DNA background plays an important role in modifying the disease phenotype but nuclear modifiers, epigenetic and environmental factors may also influence the severity of disease

    Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila

    No full text
    Modification of histones can have a dramatic impact on chromatin structure and function. Acetylation of lysines within the N-terminal tail of the histone octamer marks transcriptionally active regions of the genome whereas deacetylation seems to play a role in transcriptional silencing. Recently, the methylation of the histone tails has also been shown to be important for transcriptional regulation and chromosome structure. Here we show by immunoaffinity purification that two activities important for chromatin-mediated gene silencing, the histone methyltransferase SU(VAR)3-9 and the histone deacetylase HDAC1, associate in vivo. The two activities cooperate to methylate pre-acetylated histones. Both enzymes are modifiers of position effect variegation and interact genetically in flies. We suggest a model in which the concerted histone deacetylation and methylation by a SU(VAR)3-9/HDAC1-containing complex leads to a permanent silencing of transcription in particular areas of the genome

    Late-onset ptosis and myopathy in a patient with a heterozygous insertion in POLG2

    No full text
    Polymerase gamma 1 (POLG) mutations are a frequent cause of both autosomal dominant and recessive complex neurological phenotypes. In contrast, only a single pathogenic mutation in one patient was reported in POLG2 so far. Here we describe a 62-year-old woman, carrying a novel heterozygous sequence variant in the POLG2 gene. She developed bilateral ptosis at 30 years of age, followed by exercise intolerance, muscle weakness and mild CK increase in her late forties. Muscle histology and respiratory chain activities were normal. Southern blot and long range PCR detected multiple mtDNA deletions, but no depletion in muscle DNA. Sequencing of POLG, PEO1, ANT1, OPA1 and RRM2B showed normal results. A novel heteroallelic 24 bp insertion (c.1207_1208ins24) was detected in POLG2. This 24 bp insertion into exon 7 causes missplicing and loss of exon 7 in myoblast cDNA. We did not detect POLG2 mutations in 62 patients with multiple mtDNA deletions in muscle DNA, suggesting that POLG2 mutations may represent a rare cause of autosomal dominant PEO
    corecore