17 research outputs found

    UV-B effects on leaves – oxidative stress and acclimation in controlled environments

    Get PDF
    As the steady decline in the Earth’s stratospheric ozone layer and parallel increase in solar ultraviolet-B (UV-B: 280–315 nm) has come to an end, the focus of plant UV research has been shifted from regarding UV-B as threatening plant life to recognizing it as a regulatory factor. While UV-B photoreceptor mediated signaling is increasingly understood, the role of UV-B inducible reactive oxygen species is still to be explored. Earlier experiments with high UV-B irradiation doses and isolated thylakoid membranes demonstrated the potential of UV-B to trigger oxidative stress. However, under realistic UV conditions pro-oxidants cannot be reliably traced in more complex biological samples possessing an array of antioxidant defenses. In the absence of direct experimental evidence we must rely on indications and propose hypotheses on how and whether pro-oxidants, such as reactive oxygen species contribute to acclimative responses. Here we briefly review how a balance between pro-oxidants and antioxidants is affected by UV-B in whole plant experiments performed in controlled environments. A working hypothesis is proposed in which the extents of UV-induced peroxidase and superoxide dismutase activations affect the success of acclimation to UV-B

    Study on the leaching of phthalates from polyethylene terephthalate bottles into mineral water

    Get PDF
    Carbonated and non-carbonated mineral water samples bottled in 0.5-L, 1.5-L and 2.0-L polyethylene terephthalate (PET) containers belonging to three different water brands commercialized in Hungary were studied in order to determine their phthalate content by gas chromatography - mass spectrometry. Among the six investigated phthalates, diisobutyl phthalate, di-n-butyl-phthalate, benzyl-butyl phthalate and di(2-ethyl-hexyl) phthalate (DEHP) were determined in non-carbonated samples as follows: <3.0 ng L-1 - 0.2 ÎŒg L-1, <6.6 ng L-1 - 0.8 ÎŒg L-1, <6.0 ng L-1 - 0.1 ÎŒg L-1 and <16.0 ng L-1 - 1.7 ÎŒg L-1, respectively. Any of the above-mentioned phthalate esters could not be detected in carbonated mineral water samples. DEHP was the most abundant phthalate in the investigated samples. It could be detected after 44 days of storage at 22 ÂșC and its leaching was the most pronounced when samples were stored over 1200 days. Mineral water in PET bottles of 0.5 L had the highest phthalate concentrations compared to those obtained for waters of the identical brand bottled in 1.5-L or 2.0-L PET containers due to the higher surface/volume ratio. No clear trend could be established for phthalate leaching when water samples were kept at higher temperatures (max. 60 ÂșC) showing improper storage conditions. Phthalate determination by pyrolysis - gas chromatography/ mass spectroctrometric measurements in the plastic material as well as in the aqueous phase proved the importance of the quality of PET raw material used for the production of the pre-form (virgin vs. polymer containing recycled PET)

    Elevated ROS-scavenging enzymes contribute to acclimation to UV-B exposure in transplastomic tobacco plants, reducing the role of plastid peroxidases

    Get PDF
    Leaf peroxidases play a key role in the successful acclimation of plants to low UV-B doses. The aim of the present study was to examine whether a selective enhancement of alternative chloroplast antioxidant pathways achieved by chloroplast transformation affected the need of peroxidase defence. Transplastomic tobacco lines expressing glutathione reductase in combination with either dehydroascorbate reductase or glutathione-S-transferase in their plastids exhibited better tolerance to supplemental UV-B than wild type plants. After 10 days UV treatment both maximum and effective quantum yields of PSII decreased in the wild type by 10% but were unaffected in either of the transformed lines. Activities of total peroxidase and ascorbate peroxidase, in addition to dehydroascorbate reductase and gluthatione-S-transferase, increased by UV in all lines. Gluthatione reductase activity was unaffected by UV in the transplastomic line engineered to have a higher constitutive level of this enzyme, but increased in the two other genotypes. However, the observed more successful acclimation required less activation of peroxidases in the doubly transformed plants than in the wild type and less increase in non-enzymatic hydroxyl radical neutralization in the dehydroascorbate reductase plus glutathione reductase fortified plants than in either of the other lines. These results highlight the fundamental role of efficient glutathione, and especially ascorbate, recycling in the chloroplast in response to exposure of plants to UV-B. They also identify chloroplast localized peroxidases among the large variety of leaf peroxidases as essential elements of defence, supporting our earlier hypothesis on hydrogen peroxide UV-B photo-cleavage as primary mechanism behind damage

    Antioxidant defence in UV-irradiated tobacco leaves is centred on hydrogen-peroxide neutralization

    Get PDF
    Greenhouse grown tobacco (Nicotiana tabacum L. cv. Petit Havana) plants were exposed to supplemental UV centred at 318 nm and corresponding to 13.6 kJ m-2 d-1 biologically effective UV-B (280-315 nm) radiation. After 6 days this treatment decreased photosynthesis by 30%. Leaves responded by a large increase in UV-absorbing pigment content and antioxidant capacities. UV-stimulated defence against ROS was strongest in chloroplasts, since activities of plastid enzymes FeSOD and APX had larger relative increases than other, non-plastid specific SODs or peroxidases. In addition, non-enzymatic defence against hydroxyl radicals was doubled in UV treated leaves as compared to controls. In UV treated leaves, the extent of activation of ROS neutralizing capacities followed a peroxidases > hydroxyl-radical neutralization > SOD order. These results suggest that highly effective hydrogen peroxide neutralization is the focal point of surviving UV-inducible oxidative stress and argue against a direct signalling role of hydrogen peroxide in maintaining adaptation to UV, at least in laboratory experiments

    Hydrogen peroxide contributes to the ultraviolet-B (280-315 nm) induced oxidative stress of plant leaves through multiple pathways

    Get PDF
    Solar UV-B (280-315 nm) radiation is a developmental signal in plants but may also cause oxidative stress when combined with other environmental factors. Using computer modelling and in solution experiments we show that UV-B is capable of photosensitizing hydroxyl radical production from hydrogen peroxide. We present evidence that the oxidative effect of UV-B in leaves is at least two-fold: (i) it increases cellular hydrogen peroxide concentrations, to a larger extent in pyridoxine antioxidant mutant pdx1.3-1 Arabidopsis and (ii) is capable of a partial photo-conversion of both ‘natural’ and ‘extra’ hydrogen peroxide to hydroxyl radicals. As stress conditions other than UV can increase cellular hydrogen peroxide levels, synergistic deleterious effects of various stresses may be expected already under ambient solar UV-B

    Light piping driven photosynthesis in the soil: low-light adapted active photosynthetic apparatus in the under-soil hypocotyl segments of bean (Phaseolus vulgaris)

    Get PDF
    Photosynthetic activity was identified in the under-soil hypocotyl part of 14-day-old soil-grown bean plants (Phaseolus vulgaris L. cv. Magnum) cultivated in pots under natural light-dark cycles. Electron microscopic, proteomic and fluorescence kinetic and imaging methods were used to study the photosynthetic apparatus and its activity. Under-soil shoots at 0-2 cm soil depth featured chloroplasts with low grana and starch grains and with pigment-protein compositions similar to those of the above-soil green shoot parts. However, the relative amounts of photosystem II (PSII) supercomplexes were higher; in addition a PIP-type aquaporin protein was identified in the under-soil thylakoids. Chlorophyll-a fluorescence induction measurements showed that the above- and under-soil hypocotyl segments had similar photochemical yields at low (10-55 ”mol photons m-2 s-1) light intensities. However, at higher photon flux densities the electron transport rate decreased in the under-soil shoot parts due to inactivation of the PSII reaction centers. These properties show the development of a low-light adapted photosynthetic apparatus driven by light piping of the above-soil shoot. The results of this paper demonstrate that the classic model assigning source and sink functions to above- and under-soil tissues is to be refined, and a low-light adapted photosynthetic apparatus in under-soil bean hypocotyls is capable of contributing to its own carbon supply

    Fight against cold: photosynthetic and antioxidant responses of different bell pepper cultivars (Capsicum annuum L.) to cold stress

    Get PDF
    The special metabolites of bell pepper (Capsicum annuum L.) leaves can protect the plant under possibly damaging circum- stances, such as high light, UV, unfavorable temperatures, or other environmental effects. In this study, we examined the cold stress tolerance of three different Hungarian pepper varieties (Darina, Édesalma, Rekord), focusing on the antioxidant and photosynthetic responses. The plants were developed in growth chambers under optimal temperature conditions (day/night 25 °C/20 °C) until the leaves on the fourth node became fully developed, then half of the plants received a cold treatment (day/ night 15 °C/10 °C). Via a detailed pigment analysis, the PS II chlorophyll fluorescence responses, gas exchange parameters and total antioxidant capacities, leaf acclimation to low temperatures has been characterized. Our results display some of the developing physiological and antioxidant properties, which are among the main factors in monitoring the damaging effects of cold temperatures. Nevertheless, despite their differences, the tested pepper varieties did not show different cold responses

    Antioxidant defence in UV-irradiated tobacco leaves is centred on hydrogen-peroxide neutralization

    Get PDF
    Greenhouse grown tobacco (Nicotiana tabacum L. cv. Petit Havana) plants were exposed to supplemental UV centred at 318 nm and corresponding to 13.6 kJ m-2 d-1 biologically effective UV-B (280-315 nm) radiation. After 6 days this treatment decreased photosynthesis by 30%. Leaves responded by a large increase in UV-absorbing pigment content and antioxidant capacities. UV-stimulated defence against ROS was strongest in chloroplasts, since activities of plastid enzymes FeSOD and APX had larger relative increases than other, non-plastid specific SODs or peroxidases. In addition, non-enzymatic defence against hydroxyl radicals was doubled in UV treated leaves as compared to controls. In UV treated leaves, the extent of activation of ROS neutralizing capacities followed a peroxidases > hydroxyl-radical neutralization > SOD order. These results suggest that highly effective hydrogen peroxide neutralization is the focal point of surviving UV-inducible oxidative stress and argue against a direct signalling role of hydrogen peroxide in maintaining adaptation to UV, at least in laboratory experiments

    Phenolic peroxidases: Dull generalists or purposeful specialists in stress responses?

    No full text
    This study focuses on class III peroxidases (POD) (EC 1.11.1.7) as regulators of cellular H2O2 levels in leaves under oxidative stress. The effective regulation of reactive oxygen species (ROS) concentrations in plant tissues is crucial for plant survival, and has been extensively reviewed. However, the majority of studies regard POD as a generalist without substrate specificity. This is partly due to the fact that laboratory protocols assessing POD levels use substrates, which are not contained in plants. Here, we show that both base- and stress-inducible POD activity depends on the choice of substrate. Moreover, the application of diverse substrates, particularly those contained in plants, unmasks POD isoenzymes that are distinguished by substrate preferences. This functional heterogeneity of POD responses is worth studying, especially in parallel with stress-induced changes in the phenolic profiles
    corecore