262 research outputs found

    G-Protein Coupled Receptor 18 Contributes to Establishment of the CD8 Effector T Cell Compartment.

    Get PDF
    The requirements for effector and memory CD8 T cell development are incompletely understood. Recent work has revealed a role for G-protein coupled receptor 18 (GPR18) in establishment of the intestinal CD8αα intraepithelial lymphocyte compartment. Here, we report that GPR18 is also functionally expressed in conventional CD8αβ T cells. When the receptor is lacking, mice develop fewer CD8+ KLRG1+ Granzyme B+ effector-memory cells. Bone marrow chimera studies show that the GPR18 requirement is CD8 T cell intrinsic. GPR18 is not required for T-bet expression in KLRG1+ CD8 T cells. Gene transduction experiments confirm the functional activity of GPR18 in CD8 T cells. In summary, we describe a novel GPCR requirement for establishment or maintenance of the CD8 KLRG1+ effector-memory T cell compartment. These findings have implications for methods to augment CD8 effector cell numbers

    Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection

    Get PDF
    AbstractMotheaten viable (mev) mice are deficient in the cytosolic protein tyrosine phosphatase, PTP1C, and exhibit severe B cell immunodeficiency and autoantibody production. The role of PTP1 C in B cell selection and function was analyzed by breeding immunoglobulin transgenes specific for a defined antigen, hen egg lysozyme, into mav mice. Antigen triggered a greater and more rapid elevation of intracellular calcium in PTP1 C-deficient B cells, indicating that this phosphatase negatively regulates immunoglobulin signaling. Elimination of self-reactive B cells carrying this signal-enhancing mutation was triggered during their development by binding a lower valency form of self-antigen than is normally required. These findings establish that activation of distinct repertoire-censoring mechanisms depends on quantitative differences in antigen receptor signaling, whose thresholds are determined by negative regulation through PTP1C

    Subcapsular Sinus Macrophage Fragmentation and CD169+ Bleb Acquisition by Closely Associated IL-17-Committed Innate-Like Lymphocytes

    Get PDF
    Subcapsular sinus macrophages (SSMs) in lymph nodes are rapidly exposed to antigens arriving in afferent lymph and have a role in their capture and display to B cells. In tissue sections SSMs exhibit long cellular processes and express high amounts of CD169. Here, we show that many of the cells present in lymph node cell suspensions that stain for CD169 are not macrophages but lymphocytes that have acquired SSM-derived membrane blebs. The CD169 bleb+ lymphocytes are enriched for IL-17 committed IL-7RαhiCCR6+ T cells and NK cells. In addition, the CD169 staining detected on small numbers of CD11chi dendritic cells is frequently associated with membrane blebs. Counter intuitively the CD169 bleb+ lymphocytes are mostly CD4 and CD8 negative whereas many SSMs express CD4. In situ, many IL-7Rαhi cells are present at the subcapsular sinus and interfollicular regions and migrate in close association with CD169+ macrophages. These findings suggest SSMs undergo fragmentation during tissue preparation and release blebs that are acquired by closely associated cells. They also suggest an intimate crosstalk between SSMs and IL-17 committed innate-like lymphocytes that may help provide early protection of the lymph node against lymph-borne invaders

    Thymic egress: S1P of 1000

    Get PDF
    Recent studies have begun to illuminate the mechanism of T-cell export from the thymus, with the identification of a required lysophospholipid receptor, two upstream transcription factors, and several downstream regulators of cytoskeleton dynamics. This work has generated immediate translational impact, aiding the design of immunosuppressant drugs and the identification of a novel form of human immunodeficiency

    Integrin-dependence of Lymphocyte Entry into the Splenic White Pulp

    Get PDF
    The steps involved in lymphocyte homing to the white pulp cords of the spleen are poorly understood. We demonstrate here that the integrins lymphocyte function associated (LFA)-1 and α4β1 make essential and mostly overlapping contributions necessary for B cell migration into white pulp cords. T cell entry to the white pulp is also reduced by blockade of LFA-1 and α4β1. The LFA-1 ligand, intercellular adhesion molecule 1 is critical for lymphocyte entry and both hematopoietic cells and radiation-resistant cells contribute to this requirement. Vascular cell adhesion molecule 1 contributes to the α4β1 ligand requirement and a second ligand, possibly fibronectin, also plays a role. By contrast with the entry requirements, antigen-induced movement of B cells from follicles to the outer T zone is not prevented by integrin blocking antibodies. Comparison of the distribution of integrin-blocked B cells and B cells treated with the Gαi inhibitor, pertussis toxin, early after transfer reveals in both cases reduced accumulation in the inner marginal zone. These observations suggest that chemokine receptor signaling and the integrins LFA-1 and α4β1 function together to promote lymphocyte transit from the marginal zone into white pulp cords
    • …
    corecore