23 research outputs found

    Acute myeloid leukemia arising from a donor derived premalignant hematopoietic clone: A possible mechanism for the origin of leukemia in donor cells

    Get PDF
    AbstractDuring recent years, it has become increasingly evident that donor leukemia following allogeneic transplant may be more common then realized in the past. We identified five cases of potential donor leukemia cases during past five years. The precise mechanism of the origin of such leukemias, however, remains poorly defined. In this short communication, we report a well documented case of donor-derived de novo acute myeloid leukemia (AML) that developed fourteen years after allogeneic stem cell transplantation for treatment induced AML for his primary malignancy Immunoblastic lymphoma. This case allows us to postulate a possible mechanism of the origin of donor leukemia. The de novo AML clone contained a distinct cytogenetic abnormality, trisomy 11, which was simultaneously detected in preserved peripheral blood obtained at the time of transplantation as well as in the current bone marrow from an otherwise clinically and phenotypically normal donor. The findings from this unique case, provides insight into the process of leukemogenesis, and suggests that the sequence of events leading to leukemogenesis in this patient involved the senescence/apoptosis of normal donor hematopoietic cells due to telomere shortening resulting in the selective proliferation and transformation of this clone with MLL (mixed-lineage leukemia) gene amplification

    The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation.

    Get PDF
    OBJECTIVES: The interaction between the immune system and tumor cells is an important feature for the prognosis and treatment of cancer. Multiplex immunohistochemistry (mIHC) and multiplex immunofluorescence (mIF) analyses are emerging technologies that can be used to help quantify immune cell subsets, their functional state, and their spatial arrangement within the tumor microenvironment. METHODS: The Society for Immunotherapy of Cancer (SITC) convened a task force of pathologists and laboratory leaders from academic centers as well as experts from pharmaceutical and diagnostic companies to develop best practice guidelines for the optimization and validation of mIHC/mIF assays across platforms. RESULTS: Representative outputs and the advantages and disadvantages of mIHC/mIF approaches, such as multiplexed chromogenic IHC, multiplexed immunohistochemical consecutive staining on single slide, mIF (including multispectral approaches), tissue-based mass spectrometry, and digital spatial profiling are discussed. CONCLUSIONS: mIHC/mIF technologies are becoming standard tools for biomarker studies and are likely to enter routine clinical practice in the near future. Careful assay optimization and validation will help ensure outputs are robust and comparable across laboratories as well as potentially across mIHC/mIF platforms. Quantitative image analysis of mIHC/mIF output and data management considerations will be addressed in a complementary manuscript from this task force

    Patterns of expression of cell cycle/apoptosis genes along the spectrum of thyroid carcinoma progression

    No full text
    Genetic screening studies suggest that genetic changes underlie progression from well differentiated to anaplastic thyroid cancers. The aim of this study is to determine to what extent cell cycle/apoptosis regulators contribute to cancer progression. Tissue microarrarys (TMAs) were constructed from well-differentiated papillary thyroid carcinoma (WDPTC; n = 41), poorly differentiated thyroid carcinoma (PDTC; n = 43), and anaplastic thyroid carcinoma (ATC; n = 22). TMAs were immunostained for 7 different cell cycle/apoptosis-related genes (p53, Ki-67, bcl-2, mdm-2, cyclin D1, p21, and p27). p53 (0%, 12%, 32%) and Ki-67 (5%, 49%, 82%) were expressed with increasing frequency, and bcl-2 (68%, 42%, 0%) and p21 (40%, 7%, 0%) with decreasing frequency in WDPTC to PDTC and ATC, respectively (P < .001). Interestingly, mdm-2 (54%, 5%, 0%) showed decreased expression along the progression axis (P < .001). p27 and cyclin D1 were expressed in <15% of cases, with a trend toward decreasing expression from WDPTC to PDTC to ATC. These data confirm the presence of increasing genetic complexity with progressive dedifferentiation in thyroid cancer, with aberrant tumor suppressor activity and increased proliferative activity being most prevalent in ATC. The data also confirm the intermediate position of PDTC in the classification scheme of thyroid carcinoma

    The ETS Protein MEF Is Regulated by Phosphorylation-Dependent Proteolysis via the Protein-Ubiquitin Ligase SCF(Skp2)

    No full text
    MEF is an ETS-related transcription factor with strong transcriptional activating activity that affects hematopoietic stem cell behavior and is required for normal NK cell and NK T-cell development. The MEF (also known as ELF4) gene is repressed by several leukemia-associated fusion transcription factor proteins (PML-retinoic acid receptor α and AML1-ETO), but it is also activated by retroviral insertion in several cancer models. We have previously shown that cyclin A-dependent phosphorylation of MEF largely restricts its activity to the G(1) phase of the cell cycle; we now show that MEF is a short-lived protein whose expression level also peaks during late G(1) phase. Mutagenesis studies show that the rapid turnover of MEF in S phase is dependent on the specific phosphorylation of threonine 643 and serine 648 at the C terminus of MEF by cdk2 and on the Skp1/Cul1/F-box (SCF) E3 ubiquitin ligase complex SCF(Skp2), which targets MEF for ubiquitination and proteolysis. Overexpression of MEF drives cells through the G(1)/S transition, thereby promoting cell proliferation. The tight regulation of MEF levels during the cell cycle contributes to its effects on regulating cell cycle entry and cell proliferation
    corecore