26 research outputs found

    Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays

    Get PDF
    Background: Recent developments in high-throughput methods of analyzing transcriptomic profiles are promising for many areas of biology, including ecophysiology. However, although commercial microarrays are available for most common laboratory models, transcriptome analysis in non-traditional model species still remains a challenge. Indeed, the signal resulting from heterologous hybridization is low and difficult to interpret because of the weak complementarity between probe and target sequences, especially when no microarray dedicated to a genetically close species is available. Results: We show here that transcriptome analysis in a species genetically distant from laboratory models is made possible by using MAXRS, a new method of analyzing heterologous hybridization on microarrays. This method takes advantage of the design of several commercial microarrays, with different probes targeting the same transcript. To illustrate and test this method, we analyzed the transcriptome of king penguin pectoralis muscle hybridized to Affymetrix chicken microarrays, two organisms separated by an evolutionary distance of approximately 100 million years. The differential gene expression observed between different physiological situations computed by MAXRS was confirmed by real-time PCR on 10 genes out of 11 tested. Conclusions: MAXRS appears to be an appropriate method for gene expression analysis under heterologous hybridization conditions

    Mitochondrial characters do not correlate with maximum lifespan across populations of the bivalve Arctica islandica.

    Get PDF
    The mitochondrial oxidative stress theory of aging posits that membrane susceptibility to peroxidation and the organization of the electron transport system (ETS) linked with reactive oxygen species (ROS) generation are two main drivers of lifespan. While a clear correlation has been established from species comparative studies, the significance of these characteristics as potential modulators of lifespan divergences among populations of individual species is still to be tested. The bivalve Arctica islandica, the longest-lived non-colonial animal with a record lifespan of 507y, possesses a lower mitochondrial peroxidation index (PI) and reduced H2O2 efflux linked to complexes I and III activities than related species. Taking advantage of the wide variation in maximum reported longevities (MRL) among 6 European populations (36 to 507y), we examined whether these two mitochondrial properties could explain differences in longevity. We report no relationship between membrane PI and MRL in populations of A. islandica, as well as a lack of intraspecific relationship between ETS complex activities and MRL. Individuals from brackish sites characterized by wide temperature and salinity windows had, however, markedly lower ETS enzyme activities relative to citrate synthase activity. Our results highlight environment-dependent remodeling of mitochondrial phenotypes

    A distinct mitochondrial genome with DUI-like inheritance in the ocean quahog Arctica islandica

    Get PDF
    Mitochondrial DNA (mtDNA) is strictly maternally inherited in metazoans. The major exception to this rule has been found in many bivalve species which allow the presence of different sex-linked mtDNA molecules. This mechanism, named Doubly Uniparental Inheritance (DUI), is characterized by the presence of 2 mtDNAs: the female mtDNA is found in somatic tissue and female gonads whereas the male mtDNA is usually found in male gonads and sperm. In this study we highlight the existence of two divergent mitochondrial haplotypes with a low genetic difference around 6-8% in Arctica islandica, a long-lived clam belonging to the Arcticidae, a sister group to the Veneridae in which DUI has been found. Phylogenetic analysis on cytochrome b and 16S sequences from somatic and gonadic tissues of clams belonging to different populations reveal the presence of the “divergent” type in male gonads only and the “normal” type in somatic tissues and female gonads. This peculiar segregation of divergent mtDNA types speaks for the occurrence of the DUI mechanism in Arctica islandica. This example also highlights the difficulties to assess the presence of such particular mitochondrial inheritance system and underlines the possible misinterpretations in phylogeographic and phylogenetic studies of bivalve species linked to the presence of two poorly differentiated mitochondrial genomes

    Presence of male mitochondria in somatic tissues and their functional importance at the whole animal level in the marine bivalve Arctica islandica

    Get PDF
    Metazoans normally possess a single lineage of mitochondria inherited from the mother (female-type mitochondria) while paternal mitochondria are absent or eliminated in fertilized eggs. In doubly uniparental inheritance (DUI), which is specific to the bivalve Glade including the ocean quahog, Arctica islandica, male-type mitochondria are retained in male gonads and, in a few species, small proportions of male-type mitochondria co-exist with female-type in somatic tissues. To the best of our knowledge, we report, for the first time in metazoan, the natural occurrence of male and female individuals with exclusively male-type mitochondria in somatic tissues of the bivalve A. islandica. Mitochondrial genomes differ by similar to 5.5% at DNA sequence level. Exclusive presence of male-type mitochondria affects mitochondrial complexes partially encoded by mitochondrial genes and leads to a sharp drop in respiratory capacity. Through a combination of whole mitochondrial genome sequencing and molecular assays (gene presence and expression), we demonstrate that 1) 11% of individuals of an Icelandic population appear homoplasmic for male-type mitochondria in somatic tissues, 2) male-type mitochondrial genes are transcribed and 3) individuals with d-type mitochondria in somatic cells lose 30% of their wild-type respiratory capacity. This mitochondrial pattern in A. islandica is a special case of DUI, highlighted in individuals from both sexes with functional consequences at cellular and conceivably whole animal level

    Functional argument for the existence of an avian nitric oxide synthase in muscle mitochondria: Effect of cold acclimation

    Get PDF
    International audienceWe report the first evidence of a mitochondrial NO synthase (mtNOS) in bird skeletal muscle. In vitro, mtNOS activity stimulated by L-arginine reduced intermyofibrillar mitochondrial oxygen uptake and ATP synthesis rates, stimulated endogenous H2O2 generation, but had no effect on oxidative phosphorylation efficiency. Arginine-induced effects were fully reversed by L-NAME, a known NOS inhibitor. When ducklings were cold exposed for 4 weeks, muscle mitochondria displayed an increased state 3 respiration, a reduced H2O2 generation but no significant alteration in mtNOS activity. We conclude that mtNOS is expressed in avian skeletal muscle. (C) 2010 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved

    Extreme mitochondrial DNA divergence underlies genetic conflict over sex determination

    No full text
    International audienceCytoplasmic male sterility (CMS) is a form of genetic conflict over sex determination that results from differences in modes of inheritance between genomic compartments.1, 2, 3 Indeed, maternally transmitted (usually mitochondrial) genes sometimes enhance their transmission by suppressing the male function in a hermaphroditic organism to the detriment of biparentally inherited nuclear genes. Therefore, these hermaphrodites become functionally female and may coexist with regular hermaphrodites in so-called gynodioecious populations.3 CMS has been known in plants since Darwin’s times4 but is previously unknown in the animal kingdom.5, 6, 7, 8 We relate the first observation of CMS in animals. It occurs in a freshwater snail population, where some individuals appear unable to sire offspring in controlled crosses and show anatomical, physiological, and behavioral characters consistent with a suppression of the male function. Male sterility is associated with a mitochondrial lineage that underwent a spectacular acceleration of DNA substitution rates, affecting the entire mitochondrial genome—this acceleration concerns both synonymous and non-synonymous substitutions and therefore results from increased mitogenome mutation rates. Consequently, mitochondrial haplotype divergence within the population is exceptionally high, matching that observed between snail taxa that diverged 475 million years ago. This result is reminiscent of similar accelerations in mitogenome evolution observed in plant clades where gynodioecy is frequent,9,10 both being consistent with arms-race evolution of genome regions implicated in CMS.11,12 Our study shows that genomic conflicts can trigger independent evolution of similar sex-determination systems in plants and animals and dramatically accelerate molecular evolution
    corecore