106 research outputs found

    Matching speed production in real and simulated driving environments

    Get PDF

    Model to predict motion sickness within autonomous vehicles

    Get PDF
    Background: Motion sickness is common within most forms of transport; it affects most of the population who experience varied symptoms at some stage in their lives. Thus far, there has been no specific method to quantify the predicted levels of motion sickness for a given vehicle design, task and route. Objective: To develop a motion sickness virtual prediction tool that includes the following inputs: human motion, vision, vehicle motion, occupant task and vehicle design. Method: A time domain analysis using a multi-body systems approach has been developed to provide the raw data for post-processing of vehicle motion, occupant motion and vision, based on a virtual route designed to provoke motion sickness, while the digital occupant undertakes a specific non-driving related task. Results: Predicted motion sickness levels are shared for a simple positional sweep of a vehicle cabin due to a prescribed motion and task. Two additional examples are shared within this study; first, it was found that the model can predict the difference found between sitting forwards and backwards in an autonomous vehicle. Second, analysis of a respected and independent study into auxiliary display height shows that the model can predict both relative and absolute levels between the two display heights congruent to the original physical experiment. Conclusion: It has been shown that the tool has been successful in predicting motion sickness in autonomous vehicles and is therefore of great use in guiding new future mobility solutions in the ability to tune vehicle dynamics and control alongside vision and design attributes.</p

    User interface considerations to prevent self-driving carsickness

    Get PDF
    Self-driving cars have the potential to bring significant benefits to drivers and society at large. However, all envisaged scenarios are predicted to increase the risk of motion sickness. This will negatively affect user acceptance and uptake and hence negate the benefits of this technology. Here we discuss the impact of the user interface design in particular, focusing on display size, position, and content and the relationship with the degree of sensory conflict and ability to anticipate the future motion trajectory of the vehicle, two key determinants of motion sickness in general. Following initial design recommendations, we provide a research agenda to accelerate our understanding of self-driving cars in the context of the scenarios currently proposed. We conclude that basic perceptual mechanisms need to be considered in the design process whereby self-driving cars cannot simply be thought of as living rooms, offices, or entertainment venues on wheels

    Looking forward: In-vehicle auxiliary display positioning affects carsickness

    Get PDF
    Carsickness is associated with a mismatch between actual and anticipated sensory signals. Occupants of automated vehicles, especially when using a display, are at higher risk of becoming carsick than drivers of conventional vehicles. This study aimed to evaluate the impact of positioning of in-vehicle displays, and subsequent available peripheral vision, on carsickness of passengers. We hypothesized that increased peripheral vision during display use would reduce carsickness. Seated in the front passenger seat 18 participants were driven a 15-min long slalom on two occasions while performing a continuous visual search-task. The display was positioned either at 1) eye-height in front of the windscreen, allowing peripheral view on the outside world, and 2) the height of the glove compartment, allowing only limited view on the outside world. Motion sickness was reported at 1-min intervals. Using a display at windscreen height resulted in less carsickness compared to a display at glove compartment height

    Carsickness: preventive measures

    Get PDF
    TRL was contacted by Esure to provide guidelines and advice regarding measures to prevent and alleviate carsickness. Following a brief introduction to motion sickness, factors that are likely to affect the occurrence of carsickness will be presented. Particular emphasis is placed on the role of new in-vehicle entertainment systems and their likely exacerbating effect on carsickness. This may be of particular relevance to the occurrence of carsickness amongst children who not only tend to be most susceptible, but also most likely to use this type of in-vehicle entertainment systems. Finally, it is concluded with a list of tips to prevent or ameliorate carsickness
    corecore