82 research outputs found

    The transcription factor Mef2 is required for normal circadian behavior in Drosophila

    Get PDF
    The transcription factor Mef2 has well established roles in muscle development in Drosophila and in the differentiation of many cell types in mammals, including neurons. Here, we describe a role for Mef2 in the Drosophila pacemaker neurons that regulate circadian behavioral rhythms. We found that Mef2 is normally produced in all adult clock neurons and that Mef2 overexpression in clock neurons leads to long period and complex rhythms of adult locomotor behavior. Knocking down Mef2 expression via RNAi or expressing a repressor form of Mef2 caused flies to lose circadian behavioral rhythms. These behavioral changes are correlated with altered molecular clocks in pacemaker neurons: Mef2 overexpression causes the oscillations in individual pacemaker neurons to become desynchronized, while Mef2 knockdown strongly dampens molecular rhythms. Thus, a normal level of Mef2 activity is required in clock neurons to maintain robust and accurate circadian behavioral rhythms

    A non-coding RNA balancing act: miR-346-induced DNA damage is limited by the long non-coding RNA NORAD in prostate cancer

    Get PDF
    Background: miR‑346 was identified as an activator of Androgen Receptor (AR) signalling that associates with DNA damage response (DDR)‑linked transcripts in prostate cancer (PC). We sought to delineate the impact of miR‑346 on DNA damage, and its potential as a therapeutic agent. Methods: RNA‑IP, RNA‑seq, RNA‑ISH, DNA fibre assays, in vivo xenograft studies and bioinformatics approaches were used alongside a novel method for amplification‑free, single nucleotide‑resolution genome‑wide mapping of DNA breaks (INDUCE‑seq). Results: miR‑346 induces rapid and extensive DNA damage in PC cells ‑ the first report of microRNA‑induced DNA damage. Mechanistically, this is achieved through transcriptional hyperactivation, R‑loop formation and replication stress, leading to checkpoint activation and cell cycle arrest. miR‑346 also interacts with genome‑protective lncRNA NORAD to disrupt its interaction with PUM2, leading to PUM2 stabilisation and its increased turnover of DNA damage response (DDR) transcripts. Confirming clinical relevance, NORAD expression and activity strongly correlate with poor PC clinical outcomes and increased DDR in biopsy RNA‑seq studies. In contrast, miR‑346 is associated with improved PC survival. INDUCE‑seq reveals that miR‑346‑induced DSBs occur preferentially at binding sites of the most highly‑transcriptionally active transcription factors in PC cells, including c‑Myc, FOXA1, HOXB13, NKX3.1, and importantly, AR, resulting in target transcript downregulation. Further, RNA‑seq reveals widespread miR‑346 and shNORAD dysregulation of DNA damage, replication and cell cycle processes. NORAD drives target‑directed miR decay (TDMD) of miR‑346 as a novel genome protection mechanism: NORAD silencing increases mature miR‑346 levels by several thousand‑fold, and WT but not TDMD‑mutant NORAD rescues miR‑346‑induced DNA damage. Importantly, miR‑346 sensitises PC cells to DNA‑damaging drugs including PARP inhibitor and chemotherapy, and induces tumour regression as a monotherapy in vivo, indicating that targeting miR‑346:NORAD balance is a valid therapeutic strategy

    Predictors of patients’ choices for breast-conserving therapy or mastectomy: a prospective study

    Get PDF
    A study was undertaken to describe the treatment preferences and choices of patients with breast cancer, and to identify predictors of undergoing breast-conserving therapy (BCT) or mastectomy (MT). Consecutive patients with stage I/II breast cancer were eligible. Information about predictor variables, including socio-demographics, quality of life, patients' concerns, decision style, decisional conflict and perceived preference of the surgeon was collected at baseline, before decision making and surgery. Patients received standard information (n = 88) or a decision aid (n = 92) as a supplement to support decision making. A total of 180 patients participated in the study. In all, 72% decided to have BCT (n = 123); 28% chose MT (n = 49). Multivariate analysis showed that what patients perceived to be their surgeons' preference and the patients' concerns regarding breast loss and local tumour recurrence were the strongest predictors of treatment preference. Treatment preferences in itself were highly predictive of the treatment decision. The decision aid did riot influence treatment choice. The results of this study demonstrate that patients' concerns and their perceptions of the treatment preferences of the physicians are important factors in patients' decision making. Adequate information and communication are essential to base treatment decisions on realistic concerns, and the treatment preferences of patients, (C) 2004 Cancer Research U

    Perturbing Dynamin Reveals Potent Effects on the Drosophila Circadian Clock

    Get PDF
    BACKGROUND: Transcriptional feedback loops are central to circadian clock function. However, the role of neural activity and membrane events in molecular rhythms in the fruit fly Drosophila is unclear. To address this question, we expressed a temperature-sensitive, dominant negative allele of the fly homolog of dynamin called shibire(ts1) (shi(ts1)), an active component in membrane vesicle scission. PRINCIPAL FINDINGS: Broad expression in clock cells resulted in unexpectedly long, robust periods (>28 hours) comparable to perturbation of core clock components, suggesting an unappreciated role of membrane dynamics in setting period. Expression in the pacemaker lateral ventral neurons (LNv) was necessary and sufficient for this effect. Manipulation of other endocytic components exacerbated shi(ts1)'s behavioral effects, suggesting its mechanism is specific to endocytic regulation. PKA overexpression rescued period effects suggesting shi(ts1) may downregulate PKA pathways. Levels of the clock component PERIOD were reduced in the shi(ts1)-expressing pacemaker small LNv of flies held at a fully restrictive temperature (29 degrees C). Less restrictive conditions (25 degrees C) delayed cycling proportional to observed behavioral changes. Levels of the neuropeptide PIGMENT-DISPERSING FACTOR (PDF), the only known LNv neurotransmitter, were also reduced, but PERIOD cycling was still delayed in flies lacking PDF, implicating a PDF-independent process. Further, shi(ts1) expression in the eye also results in reduced PER protein and per and vri transcript levels, suggesting that shibire-dependent signaling extends to peripheral clocks. The level of nuclear CLK, transcriptional activator of many core clock genes, is also reduced in shi(ts1) flies, and Clk overexpression suppresses the period-altering effects of shi(ts1). CONCLUSIONS: We propose that membrane protein turnover through endocytic regulation of PKA pathways modulates the core clock by altering CLK levels and/or activity. These results suggest an important role for membrane scission in setting circadian period
    • …
    corecore