95 research outputs found

    The expanding role of Tax in transcription

    Get PDF
    The viral transactivator of HTLV-I, Tax, has long been shown to target the earliest steps of transcription by forming quaternary complexes with sequence specific transcription factors and histone-modifying enzymes in the LTR of HTLV-I. However, a new study suggests that Tax preferentially transactivates the 21-bp repeats through CREB1 and not other bZIP proteins. The additional transactivation of Tax-responsive promoters subsequent to initiation is also presented. This result highlights a potentially novel role of Tax following TBP recruitment (i.e. initiation) and may expand the mechanism of Tax transactivation in promoter clearance and transcriptional elongation

    Use of a multi-virus array for the study of human viral and retroviral pathogens: gene expression studies and ChIP-chip analysis

    Get PDF
    BACKGROUND: Since the discovery of human immunodeficiency virus (HIV-1) twenty years ago, AIDS has become one of the most studied diseases. A number of viruses have subsequently been identified to contribute to the pathogenesis of HIV and its opportunistic infections and cancers. Therefore, a multi-virus array containing eight human viruses implicated in AIDS pathogenesis was developed and its efficacy in various applications was characterized. RESULTS: The amplified open reading frames (ORFs) of human immunodeficiency virus type 1, human T cell leukemia virus types 1 and 2, hepatitis C virus, Epstein-Barr virus, human herpesvirus 6A and 6B, and Kaposi's sarcoma-associated herpesvirus were spotted on glass slides and hybridized to DNA and RNA samples. Using a random priming method for labeling genomic DNA or cDNA probes, we show specific detection of genomic viral DNA from cells infected with the human herpesviruses, and effectively demonstrate the inhibitory effects of a cellular cyclin dependent kinase inhibitor on viral gene expression in HIV-1 and KSHV latently infected cells. In addition, we coupled chromatin immunoprecipitation with the virus chip (ChIP-chip) to study cellular protein and DNA binding. CONCLUSIONS: An amplicon based virus chip representing eight human viruses was successfully used to identify each virus with little cross hybridization. Furthermore, the identity of both viruses was correctly determined in co-infected cells. The utility of the virus chip was demonstrated by a variety of expression studies. Additionally, this is the first demonstrated use of ChIP-chip analysis to show specific binding of proteins to viral DNA, which, importantly, did not require further amplification for detection

    Involvement of HTLV-I Tax and CREB in aneuploidy: a bioinformatics approach

    Get PDF
    BACKGROUND: Adult T-cell leukemia (ATL) is a complex and multifaceted disease associated with human T-cell leukemia virus type 1 (HTLV-I) infection. Tax, the viral oncoprotein, is considered a major contributor to cell cycle deregulation in HTLV-I transformed cells by either directly disrupting cellular factors (protein-protein interactions) or altering their transcription profile. Tax transactivates these cellular promoters by interacting with transcription factors such as CREB/ATF, NF-κB, and SRF. Therefore by examining which factors upregulate a particular set of promoters we may begin to understand how Tax orchestrates leukemia development. RESULTS: We observed that CTLL cells stably expressing wild-type Tax (CTLL/WT) exhibited aneuploidy as compared to a Tax clone deficient for CREB transactivation (CTLL/703). To better understand the contribution of Tax transactivation through the CREB/ATF pathway to the aneuploid phenotype, we performed microarray analysis comparing CTLL/WT to CTLL/703 cells. Promoter analysis of altered genes revealed that a subset of these genes contain CREB/ATF consensus sequences. While these genes had diverse functions, smaller subsets of genes were found to be involved in G2/M phase regulation, in particular kinetochore assembly. Furthermore, we confirmed the presence of CREB, Tax and RNA Polymerase II at the p97Vcp and Sgt1 promoters in vivo through chromatin immunoprecipitation in CTLL/WT cells. CONCLUSION: These results indicate that the development of aneuploidy in Tax-expressing cells may occur in response to an alteration in the transcription profile, in addition to direct protein interactions

    Therapeutic targets for HIV-1 infection in the host proteome

    Get PDF
    BACKGROUND: Despite the success of HAART, patients often stop treatment due to the inception of side effects. Furthermore, viral resistance often develops, making one or more of the drugs ineffective. Identification of novel targets for therapy that may not develop resistance is sorely needed. Therefore, to identify cellular proteins that may be up-regulated in HIV infection and play a role in infection, we analyzed the effects of Tat on cellular gene expression during various phases of the cell cycle. RESULTS: SOM and k-means clustering analyses revealed a dramatic alteration in transcriptional activity at the G1/S checkpoint. Tat regulates the expression of a variety of gene ontologies, including DNA-binding proteins, receptors, and membrane proteins. Using siRNA to knock down expression of several gene targets, we show that an Oct1/2 binding protein, an HIV Rev binding protein, cyclin A, and PPGB, a cathepsin that binds NA, are important for viral replication following induction from latency and de novo infection of PBMCs. CONCLUSION: Based on exhaustive and stringent data analysis, we have compiled a list of gene products that may serve as potential therapeutic targets for the inhibition of HIV-1 replication. Several genes have been established as important for HIV-1 infection and replication, including Pou2AF1 (OBF-1), complement factor H related 3, CD4 receptor, ICAM-1, NA, and cyclin A1. There were also several genes whose role in relation to HIV-1 infection have not been established and may also be novel and efficacious therapeutic targets and thus necessitate further study. Importantly, targeting certain cellular protein kinases, receptors, membrane proteins, and/or cytokines/chemokines may result in adverse effects. If there is the presence of two or more proteins with similar functions, where only one protein is critical for HIV-1 transcription, and thus, targeted, we may decrease the chance of developing treatments with negative side effects

    Gene expression profile of HIV-1 Tat expressing cells: a close interplay between proliferative and differentiation signals

    Get PDF
    BACKGROUND: Expression profiling holds great promise for rapid host genome functional analysis. It is plausible that host expression profiling in an infection could serve as a universal phenotype in virally infected cells. Here, we describe the effect of one of the most critical viral activators, Tat, in HIV-1 infected and Tat expressing cells. We utilized microarray analysis from uninfected, latently HIV-1 infected cells, as well as cells that express Tat, to decipher some of the cellular changes associated with this viral activator. RESULTS: Utilizing uninfected, HIV-1 latently infected cells, and Tat expressing cells, we observed that most of the cellular host genes in Tat expressing cells were down-regulated. The down-regulation in Tat expressing cells is most apparent on cellular receptors that have intrinsic receptor tyrosine kinase (RTK) activity and signal transduction members that mediate RTK function, including Ras-Raf-MEK pathway. Co-activators of transcription, such as p300/CBP and SRC-1, which mediate gene expression related to hormone receptor genes, were also found to be down-regulated. Down-regulation of receptors may allow latent HIV-1 infected cells to either hide from the immune system or avoid extracellular differentiation signals. Some of the genes that were up-regulated included co-receptors for HIV-1 entry, translation machinery, and cell cycle regulatory proteins. CONCLUSIONS: We have demonstrated, through a microarray approach, that HIV-1 Tat is able to regulate many cellular genes that are involved in cell signaling, translation and ultimately control the host proliferative and differentiation signals

    Comida chatarra, Estado y mercado

    Get PDF
    El objetivo fundamental de esta colección es un llamado a la reflexión y a la toma de conciencia por parte de todos los involucrados –padres de familia, educadores, directivos de empresa, líderes políticos, organizaciones de la sociedad civil, entre otros– sobre los peligros y las graves consecuencias derivadas del creciente sobrepeso y de la obesidad en nuestra sociedad, sin descuidar la otra cara de la moneda que es la desnutrición crónica infantil. En segundo lugar, se busca provocar la reflexión y el debate sobre el rol del Estado, el mercado, las empresas (tanto la industria de alimentos como las agencias de publicidad), la sociedad civil y las familias, en la provocación o prevención de esta epidemia. Finalmente, buscamos plantear diversas soluciones para este problema antes de que sea demasiado tarde

    MICU1 Controls Both the Threshold and Cooperative Activation of the Mitochondrial Ca(2+) Uniporter.

    Get PDF
    Mitochondrial Ca(2+) uptake via the uniporter is central to cell metabolism, signaling, and survival. Recent studies identified MCU as the uniporter\u27s likely pore and MICU1, an EF-hand protein, as its critical regulator. How this complex decodes dynamic cytoplasmic [Ca(2+)] ([Ca(2+)]c) signals, to tune out small [Ca(2+)]c increases yet permit pulse transmission, remains unknown. We report that loss of MICU1 in mouse liver and cultured cells causes mitochondrial Ca(2+) accumulation during small [Ca(2+)]c elevations but an attenuated response to agonist-induced [Ca(2+)]c pulses. The latter reflects loss of positive cooperativity, likely via the EF-hands. MICU1 faces the intermembrane space and responds to [Ca(2+)]c changes. Prolonged MICU1 loss leads to an adaptive increase in matrix Ca(2+) binding, yet cells show impaired oxidative metabolism and sensitization to Ca(2+) overload. Collectively, the data indicate that MICU1 senses the [Ca(2+)]c to establish the uniporter\u27s threshold and gain, thereby allowing mitochondria to properly decode different inputs

    Morphological Analysis of Major Segments of Coronary Artery Occlusion: Importance in Myocardial Revascularization Surgery

    Get PDF
    Revascularization surgery should ensure morphological similarity between the coronary artery and the graft. This is an important factor for its duration and permeability. The aim of this study was to analyze the morphological characteristics and morphometrics of the coronary artery segments with greater occlusion. This was an observational, cross-sectional descriptive study that consisted of two phases. A macroscopic phase in which 11 cadaveric hearts were extracted and coronary dominance and length of the anterior interventricular artery (AIA), the right coronary artery (RCA) and the circumflex artery (CXA) were determined. In the microscopic phase a total of 77 segments of these arteries were obtained and the luminal diameter, wall thickness, and amount of elastic fibers and the presence and size of the atheroma were determined. Right coronary dominance was the most frequent. Total vessel length was 15.65±1.17 cm for the AIA, 12.67±2.02 cm for the RCA and 8.79±2.5 cm for the CXA. Diameters ranged from 2.3 mm in the proximal segments and between 1.1 mm to 1.8 mm in the distal segments. Wall thickness in the proximal segments was between 354 µm and 396 µm and in the distal segments it ranged from 120 µm to 305 µm. The amount of elastic fibers showed that they were muscular arteries. Atheromas were present in 35% in the CXA, and in 32.5% in the AIA and the RCA. The largest ones were found in the proximal segments. This study examined the morphology and morphometry of the segments of the coronary arteries that are more frequently occluded. It provides information on the most significant parameters to be considered for election of the vascular graft in myocardial revascularization surgery

    Scientific imperatives, clinical implications, and theoretical underpinnings for the investigation of the relationship between genetic variables and patient-reported quality-of-life outcomes

    Get PDF
    Objectives There is emerging evidence for a genetic basis of patient-reported quality-of-life (QOL) outcomes that can ultimately be incorporated into clinical research and practice. Objectives are (1) to provide arguments for the timeliness of investigating the genetic basis of QOL given the scientific advances in genetics and patient-reported QOL research; (2) to describe the clinical implications of such investigations; (3) to present a theoretical foundation for investigating the genetic underpinnings of QOL; and (4) to describe a series of papers resulting from the GENEQOL Consortium that was established to move this work forward. Methods Discussion of scientific advances based on relevant literature. Results In genetics, technological advances allow for increases in speed and efficiency and decreases in costs in exploring the genetic underpinnings of disease processes, drug metabolism, treatment response, and survival. In patient-based research, advances yield empirically based and stringent approaches to measurement that are scientifically robust. Insights into the genetic basis of QOL will ultimately allow early identification of patients susceptible to QOL deficits and to target care. The Wilson and Cleary model for patient-reported outcomes was refined by incorporating the genetic underpinnings of QOL. Conclusions This series of papers provides a path for QOL and genetics researchers to work together to move this field forward and to unravel the intricate interplay of the genetic underpinnings of patient-reported QOL outcomes. The ultimate result will be a greater understanding of the process relating disease, patient, and doctor that will have the potential to lead to improved survival, QOL, and health services deliver
    corecore