181 research outputs found

    MEPicides: Potent antimalarial prodrugs targeting isoprenoid biosynthesis

    Get PDF
    AbstractThe emergence of Plasmodium falciparum resistant to frontline therapeutics has prompted efforts to identify and validate agents with novel mechanisms of action. MEPicides represent a new class of antimalarials that inhibit enzymes of the methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, including the clinically validated target, deoxyxylulose phosphate reductoisomerase (Dxr). Here we describe RCB-185, a lipophilic prodrug with nanomolar activity against asexual parasites. Growth of P. falciparum treated with RCB-185 was rescued by isoprenoid precursor supplementation, and treatment substantially reduced metabolite levels downstream of the Dxr enzyme. In addition, parasites that produced higher levels of the Dxr substrate were resistant to RCB-185. Notably, environmental isolates resistant to current therapies remained sensitive to RCB-185, the compound effectively treated sexually-committed parasites, and was both safe and efficacious in malaria-infected mice. Collectively, our data demonstrate that RCB-185 potently and selectively inhibits Dxr in P. falciparum, and represents a promising lead compound for further drug development.</jats:p

    A Novel Statistical Algorithm for Gene Expression Analysis Helps Differentiate Pregnane X Receptor-Dependent and Independent Mechanisms of Toxicity

    Get PDF
    Genome-wide gene expression profiling has become standard for assessing potential liabilities as well as for elucidating mechanisms of toxicity of drug candidates under development. Analysis of microarray data is often challenging due to the lack of a statistical model that is amenable to biological variation in a small number of samples. Here we present a novel non-parametric algorithm that requires minimal assumptions about the data distribution. Our method for determining differential expression consists of two steps: 1) We apply a nominal threshold on fold change and platform p-value to designate whether a gene is differentially expressed in each treated and control sample relative to the averaged control pool, and 2) We compared the number of samples satisfying criteria in step 1 between the treated and control groups to estimate the statistical significance based on a null distribution established by sample permutations. The method captures group effect without being too sensitive to anomalies as it allows tolerance for potential non-responders in the treatment group and outliers in the control group. Performance and results of this method were compared with the Significant Analysis of Microarrays (SAM) method. These two methods were applied to investigate hepatic transcriptional responses of wild-type (PXR+/+) and pregnane X receptor-knockout (PXR−/−) mice after 96 h exposure to CMP013, an inhibitor of β-secretase (β-site of amyloid precursor protein cleaving enzyme 1 or BACE1). Our results showed that CMP013 led to transcriptional changes in hallmark PXR-regulated genes and induced a cascade of gene expression changes that explained the hepatomegaly observed only in PXR+/+ animals. Comparison of concordant expression changes between PXR+/+ and PXR−/− mice also suggested a PXR-independent association between CMP013 and perturbations to cellular stress, lipid metabolism, and biliary transport

    Transkingdom Analysis of the Female Reproductive Tract Reveals Bacteriophages form Communities

    Get PDF
    The female reproductive tract (FRT) microbiome plays a vital role in maintaining vaginal health. Viruses are key regulators of other microbial ecosystems, but little is known about how the FRT viruses (virome), particularly bacteriophages that comprise the phageome, impact FRT health and dysbiosis. We hypothesize that bacterial vaginosis (BV) is associated with altered FRT phageome diversity, transkingdom interplay, and bacteriophage discriminate taxa. Here, we conducted a retrospective, longitudinal analysis of vaginal swabs collected from 54 BV-positive and 46 BV-negative South African women. Bacteriome analysis revealed samples clustered into five distinct bacterial community groups (CGs), and further, bacterial alpha diversity was significantly associated with BV. Virome analysis on a subset of baseline samples showed FRT bacteriophages clustering into novel viral state types (VSTs), a viral community clustering system based on virome composition and abundance. Distinct BV bacteriophage signatures included increased alpha diversity along with discriminant Bacillus, Burkholderia, and Escherichia bacteriophages. Bacteriophage-bacteria transkingdom associations were also identified between Bacillus and Burkholderia viruses and BV-associated bacteria, providing key insights for future studies elucidating the transkingdom interactions driving BV-associated microbiome perturbations. In this cohort, bacteriophage-bacterial associations suggest complex interactions, which may play a role in the establishment and maintenance of BV

    The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific

    Get PDF
    The world's oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp). Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed “fragment recruitment,” addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed “extreme assembly,” made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1) extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2) numerous changes in gene content some with direct adaptive implications; and (3) hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic similarity between metagenomic samples and show how they may be grouped into several community types. Specific functional adaptations can be identified both within individual ribotypes and across the entire community, including proteorhodopsin spectral tuning and the presence or absence of the phosphate-binding gene PstS

    The Roles of Standardization, Certification and Assurance Services in Global Commerce

    Get PDF
    In this article we examine the rapid emergence and expansion of standardized product and process frameworks and a private-sector compliance and enforcement infrastructure that we believe may increasingly be providing a substitute for public and legal regulatory infrastructure in global commerce. This infrastructure is provided by a proliferation of performance codes and standards, many of which define acceptable social and environmental behavior, and a rapidly-growing number of privately-trained and authorized inspectors and certifiers that we call the third-party assurance industry. We offer reasons for this development, evidence of its scope and scale, and then describe the phenomenon in more detail by examining supply chain arrangements in two industries, food products and apparel, where the use of third-party standards and assurance services has expanded especially rapidly. We conclude with a discussion of the implications for the make or buy decision at the core of the theory of the firm. We argue that as quasi-regulatory standards are developed within various industries, and as performance to these standards can be systematically evaluated using third-party inspectors and certifiers, the costs of moving production outside of vertical firm hierarchies drop. We believe this may be an important factor in accelerating the shift to outsourcing that has been observed over the last two decades

    Instability, investment, disasters, and demography: natural disasters and fertility in Italy (1820–1962) and Japan (1671–1965)

    Get PDF
    This article examines whether natural disasters affect fertility—a topic little explored but of policy importance given relevance to policies regarding disaster insurance, foreign aid, and the environment. The identification strategy uses historic regional data to exploit natural variation within each of two countries: one European country—Italy (1820–1962), and one Asian country—Japan (1671–1965). The choice of study settings allows consideration of Jones’ (The European miracle, Cambridge University Press, Cambridge, 1981) theory that preindustrial differences in income and population between Asia and Europe resulted from the fertility response to different environmental risk profiles. According to the results, short-run instability, particularly that arising from the natural environment, appears to be associated with a decrease in fertility—thereby suggesting that environmental shocks and economic volatility are associated with a decrease in investment in the population size of future generations. The results also show that, contrary to Jones’ (The European miracle, Cambridge University Press, Cambridge, 1981) theory, differences in fertility between Italy and Japan cannot be explained away by disaster proneness alone. Research on the effects of natural disasters may enable social scientists and environmentalists alike to better predict the potential effects of the increase in natural disasters that may result from global climate change

    Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote

    Get PDF
    The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance

    The Sorcerer II Global Ocean Sampling Expedition: Metagenomic Characterization of Viruses within Aquatic Microbial Samples

    Get PDF
    Viruses are the most abundant biological entities on our planet. Interactions between viruses and their hosts impact several important biological processes in the world's oceans such as horizontal gene transfer, microbial diversity and biogeochemical cycling. Interrogation of microbial metagenomic sequence data collected as part of the Sorcerer II Global Ocean Expedition (GOS) revealed a high abundance of viral sequences, representing approximately 3% of the total predicted proteins. Cluster analyses of the viral sequences revealed hundreds to thousands of viral genes encoding various metabolic and cellular functions. Quantitative analyses of viral genes of host origin performed on the viral fraction of aquatic samples confirmed the viral nature of these sequences and suggested that significant portions of aquatic viral communities behave as reservoirs of such genetic material. Distributional and phylogenetic analyses of these host-derived viral sequences also suggested that viral acquisition of environmentally relevant genes of host origin is a more abundant and widespread phenomenon than previously appreciated. The predominant viral sequences identified within microbial fractions originated from tailed bacteriophages and exhibited varying global distributions according to viral family. Recruitment of GOS viral sequence fragments against 27 complete aquatic viral genomes revealed that only one reference bacteriophage genome was highly abundant and was closely related, but not identical, to the cyanomyovirus P-SSM4. The co-distribution across all sampling sites of P-SSM4-like sequences with the dominant ecotype of its host, Prochlorococcus supports the classification of the viral sequences as P-SSM4-like and suggests that this virus may influence the abundance, distribution and diversity of one of the most dominant components of picophytoplankton in oligotrophic oceans. In summary, the abundance and broad geographical distribution of viral sequences within microbial fractions, the prevalence of genes among viral sequences that encode microbial physiological function and their distinct phylogenetic distribution lend strong support to the notion that viral-mediated gene acquisition is a common and ongoing mechanism for generating microbial diversity in the marine environment
    corecore