6 research outputs found

    A Transcription Elongation Factor That Links Signals from the Reproductive System to Lifespan Extension in Caenorhabditis elegans

    Get PDF
    In Caenorhabditis elegans and Drosophila melanogaster, the aging of the soma is influenced by the germline. When germline-stem cells are removed, aging slows and lifespan is increased. The mechanism by which somatic tissues respond to loss of the germline is not well-understood. Surprisingly, we have found that a predicted transcription elongation factor, TCER-1, plays a key role in this process. TCER-1 is required for loss of the germ cells to increase C. elegans' lifespan, and it acts as a regulatory switch in the pathway. When the germ cells are removed, the levels of TCER-1 rise in somatic tissues. This increase is sufficient to trigger key downstream events, as overexpression of tcer-1 extends the lifespan of normal animals that have an intact reproductive system. Our findings suggest that TCER-1 extends lifespan by promoting the expression of a set of genes regulated by the conserved, life-extending transcription factor DAF-16/FOXO. Interestingly, TCER-1 is not required for DAF-16/FOXO to extend lifespan in animals with reduced insulin/IGF-1 signaling. Thus, TCER-1 specifically links the activity of a broadly deployed transcription factor, DAF-16/FOXO, to longevity signals from reproductive tissues

    Postsynaptic regulation of synaptic plasticity by synaptotagmin 4 requires both C2 domains

    Get PDF
    Ca[superscript 2+] influx into synaptic compartments during activity is a key mediator of neuronal plasticity. Although the role of presynaptic Ca[superscript 2+] in triggering vesicle fusion though the Ca[superscript 2+] sensor synaptotagmin 1 (Syt 1) is established, molecular mechanisms that underlie responses to postsynaptic Ca[superscript 2+] influx remain unclear. In this study, we demonstrate that fusion-competent Syt 4 vesicles localize postsynaptically at both neuromuscular junctions (NMJs) and central nervous system synapses in Drosophila melanogaster. Syt 4 messenger RNA and protein expression are strongly regulated by neuronal activity, whereas altered levels of postsynaptic Syt 4 modify synaptic growth and presynaptic release properties. Syt 4 is required for known forms of activity-dependent structural plasticity at NMJs. Synaptic proliferation and retrograde signaling mediated by Syt 4 requires functional C2A and C2B Ca[superscript 2+]–binding sites, as well as serine 284, an evolutionarily conserved substitution for a key Ca[superscript 2+]-binding aspartic acid found in other synaptotagmins. These data suggest that Syt 4 regulates activity-dependent release of postsynaptic retrograde signals that promote synaptic plasticity, similar to the role of Syt 1 as a Ca[superscript 2+] sensor for presynaptic vesicle fusion.United States National Institutes of Health (Grant NS40296

    Learning fiberoptic intubation on a simple model transfers to the O.R.

    No full text
    corecore