6 research outputs found

    Human Cytomegalovirus-Specific CD4(+)-T-Cell Cytokine Response Induces Fractalkine in Endothelial Cells

    No full text
    Cytomegalovirus (CMV) infection has been linked to inflammation-related disease processes in the human host, including vascular diseases and chronic transplant rejection. The mechanisms through which CMV affects the pathogenesis of these diseases are for the most part unknown. To study the contributing role of the host immune response to CMV in these chronic inflammatory processes, we examined endothelial cell interactions with peripheral blood mononuclear cells (PBMC). Endothelial cultures were monitored for levels of fractalkine induction as a marker for initiating the host inflammatory response. Our results demonstrate that in the presence of CMV antigen PBMC from normal healthy CMV-seropositive donors produce soluble factors that induce fractalkine in endothelial cells. This was not observed in parallel assays with PBMC from seronegative donors. Examination of subset populations within the PBMC further revealed that CMV antigen-stimulated CD4(+) T cells were the source of the factors, gamma interferon and tumor necrosis factor alpha, driving fractalkine induction. Direct contact between CD4(+) cells and the endothelial monolayers is required for this fractalkine induction, where the endothelial cells appear to provide antigen presentation functions. These findings indicate that CMV may represent one member of a class of persistent pathogens where the antigen-specific T-cell response can result in the induction of fractalkine, leading to chronic inflammation and endothelial cell injury

    Endothelial damage from cytomegalovirus-specific host immune response can be prevented by targeted disruption of fractalkine-CX3CR1 interaction

    No full text
    Human cytomegalovirus (CMV) infection has been linked to inflammatory diseases, including vascular disease and chronic transplant rejection, that involve vascular endothelial damage. We have previously shown that the host CD4+ T-cell response to CMV antigen can produce IFNγ and TNFα at levels sufficient to drive induction of fractalkine, a key marker of inflammation in endothelial cells. We have also observed a major pathogenic effect in which endothelial cell damage and loss follow the induction of frac-talkine and up-regulation of cell adhesion markers in the presence of peripheral blood mononuclear cells (PBMCs) from donors with a high CMV-specific T-cell frequency. In this report, we show that the fractalkine-CX3CR1 interaction resulting in recruitment of natural killer (NK) cells and monocyte-macrophages plays an important role in mediating this endothelial damage. Supportive evidence for frac-talkine's key role is shown by the ability of specific antibody to CX3CR1 to reduce significantly CX3CR1+-bearing cell chemoattraction and to protect against endothelial damage. These findings support CMV as a member of a class of persistent pathogens in which a high T-cell response and chemokine-mediated effects are a risk factor for development of chronic inflammation and endothelial cell injury

    High T-cell response to human cytomegalovirus induces chemokine-mediated endothelial cell damage

    No full text
    Human cytomegalovirus (CMV) infection has been linked to inflammatory diseases that involve vascular endothelial damage, including vascular disease and chronic transplant rejection. We previously reported that the host CD4+ T-cell response to CMV antigen presented by endothelial cells can produce interferon-γ and tumor necrosis factor-α at levels sufficient to drive induction of fractalkine, a key marker of inflammation, in endothelial cells. In this work, we report that donors with high frequencies of antigen-specific T cells to CMV (high responders) induce higher levels of activation-associated chemokines such as fractalkine, RANTES (regulated on activation, normal T cell expressed and secreted), and macrophage inflammatory protein-1β, together with cell-adhesion markers in endothelial cells compared with donors with low levels of CMV-specific T cells (low responders). High-responder cultures had higher levels of leukocyte recruitment and adherence to the endothelial monolayers associated with progressive damage and loss of the endothelial cells. These processes that led to endothelial destruction only required viral antigen and did not require infectious virus. Our findings further support that CMV may represent one member of a class of persistent pathogens in which a high antigen-specific T-cell response defines an important risk factor for development of chronic inflammation and endothelial cell injury
    corecore