72 research outputs found

    Differential expression of the nuclear-encoded mitochondrial transcriptome in pediatric septic shock.

    Get PDF
    INTRODUCTION: Increasing evidence supports a role for mitochondrial dysfunction in organ injury and immune dysregulation in sepsis. Although differential expression of mitochondrial genes in blood cells has been reported for several diseases in which bioenergetic failure is a postulated mechanism, there are no data about the blood cell mitochondrial transcriptome in pediatric sepsis. METHODS: We conducted a focused analysis using a multicenter genome-wide expression database of 180 children ≤ 10 years of age with septic shock and 53 healthy controls. Using total RNA isolated from whole blood within 24 hours of PICU admission for septic shock, we evaluated 296 nuclear-encoded mitochondrial genes using a false discovery rate of 1%. A series of bioinformatic approaches were applied to compare differentially expressed genes across previously validated gene expression-based subclasses (groups A, B, and C) of pediatric septic shock. RESULTS: In total, 118 genes were differentially regulated in subjects with septic shock compared to healthy controls, including 48 genes that were upregulated and 70 that were downregulated. The top scoring canonical pathway was oxidative phosphorylation, with general downregulation of the 51 genes corresponding to the electron transport system (ETS). The top two gene networks were composed primarily of mitochondrial ribosomal proteins highly connected to ETS complex I, and genes encoding for ETS complexes I, II, and IV that were highly connected to the peroxisome proliferator activated receptor (PPAR) family. There were 162 mitochondrial genes differentially regulated between groups A, B, and C. Group A, which had the highest maximum number of organ failures and mortality, exhibited a greater downregulation of mitochondrial genes compared to groups B and C. CONCLUSIONS: Based on a focused analysis of a pediatric septic shock transcriptomic database, nuclear-encoded mitochondrial genes were differentially regulated early in pediatric septic shock compared to healthy controls, as well as across genotypic and phenotypic distinct pediatric septic shock subclasses. The nuclear genome may be an important mechanism contributing to alterations in mitochondrial bioenergetic function and outcomes in pediatric sepsis

    Testing the Prognostic Accuracy of the Updated Pediatric Sepsis Biomarker Risk Model

    Get PDF
    Background We previously derived and validated a risk model to estimate mortality probability in children with septic shock (PERSEVERE; PEdiatRic SEpsis biomarkEr Risk modEl). PERSEVERE uses five biomarkers and age to estimate mortality probability. After the initial derivation and validation of PERSEVERE, we combined the derivation and validation cohorts (n = 355) and updated PERSEVERE. An important step in the development of updated risk models is to test their accuracy using an independent test cohort. Objective To test the prognostic accuracy of the updated version PERSEVERE in an independent test cohort. Methods Study subjects were recruited from multiple pediatric intensive care units in the United States. Biomarkers were measured in 182 pediatric subjects with septic shock using serum samples obtained during the first 24 hours of presentation. The accuracy of PERSEVERE 28-day mortality risk estimate was tested using diagnostic test statistics, and the net reclassification improvement (NRI) was used to test whether PERSEVERE adds information to a physiology-based scoring system. Results Mortality in the test cohort was 13.2%. Using a risk cut-off of 2.5%, the sensitivity of PERSEVERE for mortality was 83% (95% CI 62–95), specificity was 75% (68–82), positive predictive value was 34% (22–47), and negative predictive value was 97% (91–99). The area under the receiver operating characteristic curve was 0.81 (0.70–0.92). The false positive subjects had a greater degree of organ failure burden and longer intensive care unit length of stay, compared to the true negative subjects. When adding PERSEVERE to a physiology-based scoring system, the net reclassification improvement was 0.91 (0.47–1.35; p<0.001). Conclusions The updated version of PERSEVERE estimates mortality probability reliably in a heterogeneous test cohort of children with septic shock and provides information over and above a physiology-based scoring system

    Prospective clinical testing and experimental validation of the Pediatric Sepsis Biomarker Risk Model

    Get PDF
    Sepsis remains a major public health problem with no major therapeutic advances over the last several decades. The clinical and biological heterogeneity of sepsis have limited success of potential new therapies. Accordingly, there is considerable interest in developing a precision medicine approach to inform more rational development, testing, and targeting of new therapies. We previously developed the Pediatric Sepsis Biomarker Risk Model (PERSEVERE) to estimate mortality risk and proposed its use as a prognostic enrichment tool in sepsis clinical trials; prognostic enrichment selects patients based on mortality risk independent of treatment. Here, we show that PERSEVERE has excellent performance in a diverse cohort of children with septic shock with potential for use as a predictive enrichment strategy; predictive enrichment selects patients based on likely response to treatment. We demonstrate that the PERSEVERE biomarkers are reliably associated with mortality in mice challenged with experimental sepsis, thus providing an opportunity to test precision medicine strategies in the preclinical setting. Using this model, we tested two clinically feasible therapeutic strategies, guided by the PERSEVERE-based enrichment, and found that mice identified as high risk for mortality had a greater bacterial burden and could be rescued by higher doses of antibiotics. The association between higher pathogen burden and higher mortality risk was corroborated among critically ill children with septic shock. This bedside to bench to bedside approach provides proof of principle for PERSEVERE-guided application of precision medicine in sepsis

    Risk factors for health impairments in children after hospitalization for acute COVID-19 or MIS-C

    Get PDF
    ObjectiveTo identify risk factors for persistent impairments after pediatric hospitalization for acute coronavirus disease 2019 (COVID-19) or multisystem inflammatory syndrome in children (MIS-C) during the SARS-CoV-2 pandemic.MethodsAcross 25 U.S. Overcoming COVID-19 Network hospitals, we conducted a prospective cohort study of patients <21-years-old hospitalized for acute COVID-19 or MIS-C (May 2020 to March 2022) surveyed 2- to 4-months post-admission. Multivariable regression was used to calculate adjusted risk ratios (aRR) and 95% confidence intervals (CI).ResultsOf 232 children with acute COVID-19, 71 (30.6%) had persistent symptoms and 50 (21.6%) had activity impairments at follow-up; for MIS-C (n = 241), 56 (23.2%) had persistent symptoms and 58 (24.1%) had activity impairments. In adjusted analyses of patients with acute COVID-19, receipt of mechanical ventilation was associated with persistent symptoms [aRR 1.83 (95% CI: 1.07, 3.13)] whereas obesity [aRR 2.18 (95% CI: 1.05, 4.51)] and greater organ system involvement [aRR 1.35 (95% CI: 1.13, 1.61)] were associated with activity impairment. For patients with MIS-C, having a pre-existing respiratory condition was associated with persistent symptoms [aRR 3.04 (95% CI: 1.70, 5.41)] whereas obesity [aRR 1.86 (95% CI: 1.09, 3.15)] and greater organ system involvement [aRR 1.26 (1.00, 1.58)] were associated with activity impairments.DiscussionAmong patients hospitalized, nearly one in three hospitalized with acute COVID-19 and one in four hospitalized with MIS-C had persistent impairments for ≥2 months post-hospitalization. Persistent impairments were associated with more severe illness and underlying health conditions, identifying populations to target for follow-up

    Transcriptomic profiles of multiple organ dysfunction syndrome phenotypes in pediatric critical influenza

    Get PDF
    BackgroundInfluenza virus is responsible for a large global burden of disease, especially in children. Multiple Organ Dysfunction Syndrome (MODS) is a life-threatening and fatal complication of severe influenza infection.MethodsWe measured RNA expression of 469 biologically plausible candidate genes in children admitted to North American pediatric intensive care units with severe influenza virus infection with and without MODS. Whole blood samples from 191 influenza-infected children (median age 6.4 years, IQR: 2.2, 11) were collected a median of 27 hours following admission; for 45 children a second blood sample was collected approximately seven days later. Extracted RNA was hybridized to NanoString mRNA probes, counts normalized, and analyzed using linear models controlling for age and bacterial co-infections (FDR q&lt;0.05).ResultsComparing pediatric samples collected near admission, children with Prolonged MODS for ≥7 days (n=38; 9 deaths) had significant upregulation of nine mRNA transcripts associated with neutrophil degranulation (RETN, TCN1, OLFM4, MMP8, LCN2, BPI, LTF, S100A12, GUSB) compared to those who recovered more rapidly from MODS (n=27). These neutrophil transcripts present in early samples predicted Prolonged MODS or death when compared to patients who recovered, however in paired longitudinal samples, they were not differentially expressed over time. Instead, five genes involved in protein metabolism and/or adaptive immunity signaling pathways (RPL3, MRPL3, HLA-DMB, EEF1G, CD8A) were associated with MODS recovery within a week.ConclusionThus, early increased expression of neutrophil degranulation genes indicated worse clinical outcomes in children with influenza infection, consistent with reports in adult cohorts with influenza, sepsis, and acute respiratory distress syndrome

    Multisystem Inflammatory Syndrome in Children — Initial Therapy and Outcomes

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or be any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background: The assessment of real-world effectiveness of immunomodulatory medications for multisystem inflammatory syndrome in children (MIS-C) may guide therapy. Methods: We analyzed surveillance data on inpatients younger than 21 years of age who had MIS-C and were admitted to 1 of 58 U.S. hospitals between March 15 and October 31, 2020. The effectiveness of initial immunomodulatory therapy (day 0, indicating the first day any such therapy for MIS-C was given) with intravenous immune globulin (IVIG) plus glucocorticoids, as compared with IVIG alone, was evaluated with propensity-score matching and inverse probability weighting, with adjustment for baseline MIS-C severity and demographic characteristics. The primary outcome was cardiovascular dysfunction (a composite of left ventricular dysfunction or shock resulting in the use of vasopressors) on or after day 2. Secondary outcomes included the components of the primary outcome, the receipt of adjunctive treatment (glucocorticoids in patients not already receiving glucocorticoids on day 0, a biologic, or a second dose of IVIG) on or after day 1, and persistent or recurrent fever on or after day 2. Results: A total of 518 patients with MIS-C (median age, 8.7 years) received at least one immunomodulatory therapy; 75% had been previously healthy, and 9 died. In the propensity-score-matched analysis, initial treatment with IVIG plus glucocorticoids (103 patients) was associated with a lower risk of cardiovascular dysfunction on or after day 2 than IVIG alone (103 patients) (17% vs. 31%; risk ratio, 0.56; 95% confidence interval [CI], 0.34 to 0.94). The risks of the components of the composite outcome were also lower among those who received IVIG plus glucocorticoids: left ventricular dysfunction occurred in 8% and 17% of the patients, respectively (risk ratio, 0.46; 95% CI, 0.19 to 1.15), and shock resulting in vasopressor use in 13% and 24% (risk ratio, 0.54; 95% CI, 0.29 to 1.00). The use of adjunctive therapy was lower among patients who received IVIG plus glucocorticoids than among those who received IVIG alone (34% vs. 70%; risk ratio, 0.49; 95% CI, 0.36 to 0.65), but the risk of fever was unaffected (31% and 40%, respectively; risk ratio, 0.78; 95% CI, 0.53 to 1.13). The inverse-probability-weighted analysis confirmed the results of the propensity-score-matched analysis. Conclusions: Among children and adolescents with MIS-C, initial treatment with IVIG plus glucocorticoids was associated with a lower risk of new or persistent cardiovascular dysfunction than IVIG alone. (Funded by the Centers for Disease Control and Prevention.)

    Characteristics and Outcomes of US Children and Adolescents With Multisystem Inflammatory Syndrome in Children (MIS-C) Compared With Severe Acute COVID-19

    Get PDF
    Importance Refinement of criteria for multisystem inflammatory syndrome in children (MIS-C) may inform efforts to improve health outcomes. Objective To compare clinical characteristics and outcomes of children and adolescents with MIS-C vs those with severe coronavirus disease 2019 (COVID-19). Setting, Design, and Participants Case series of 1116 patients aged younger than 21 years hospitalized between March 15 and October 31, 2020, at 66 US hospitals in 31 states. Final date of follow-up was January 5, 2021. Patients with MIS-C had fever, inflammation, multisystem involvement, and positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcriptase–polymerase chain reaction (RT-PCR) or antibody test results or recent exposure with no alternate diagnosis. Patients with COVID-19 had positive RT-PCR test results and severe organ system involvement. Exposure SARS-CoV-2. Main Outcomes and Measures Presenting symptoms, organ system complications, laboratory biomarkers, interventions, and clinical outcomes. Multivariable regression was used to compute adjusted risk ratios (aRRs) of factors associated with MIS-C vs COVID-19. Results Of 1116 patients (median age, 9.7 years; 45% female), 539 (48%) were diagnosed with MIS-C and 577 (52%) with COVID-19. Compared with patients with COVID-19, patients with MIS-C were more likely to be 6 to 12 years old (40.8% vs 19.4%; absolute risk difference [RD], 21.4% [95% CI, 16.1%-26.7%]; aRR, 1.51 [95% CI, 1.33-1.72] vs 0-5 years) and non-Hispanic Black (32.3% vs 21.5%; RD, 10.8% [95% CI, 5.6%-16.0%]; aRR, 1.43 [95% CI, 1.17-1.76] vs White). Compared with patients with COVID-19, patients with MIS-C were more likely to have cardiorespiratory involvement (56.0% vs 8.8%; RD, 47.2% [95% CI, 42.4%-52.0%]; aRR, 2.99 [95% CI, 2.55-3.50] vs respiratory involvement), cardiovascular without respiratory involvement (10.6% vs 2.9%; RD, 7.7% [95% CI, 4.7%-10.6%]; aRR, 2.49 [95% CI, 2.05-3.02] vs respiratory involvement), and mucocutaneous without cardiorespiratory involvement (7.1% vs 2.3%; RD, 4.8% [95% CI, 2.3%-7.3%]; aRR, 2.29 [95% CI, 1.84-2.85] vs respiratory involvement). Patients with MIS-C had higher neutrophil to lymphocyte ratio (median, 6.4 vs 2.7, P < .001), higher C-reactive protein level (median, 152 mg/L vs 33 mg/L; P < .001), and lower platelet count (<150 ×103 cells/μL [212/523 {41%} vs 84/486 {17%}, P < .001]). A total of 398 patients (73.8%) with MIS-C and 253 (43.8%) with COVID-19 were admitted to the intensive care unit, and 10 (1.9%) with MIS-C and 8 (1.4%) with COVID-19 died during hospitalization. Among patients with MIS-C with reduced left ventricular systolic function (172/503, 34.2%) and coronary artery aneurysm (57/424, 13.4%), an estimated 91.0% (95% CI, 86.0%-94.7%) and 79.1% (95% CI, 67.1%-89.1%), respectively, normalized within 30 days. Conclusions and Relevance This case series of patients with MIS-C and with COVID-19 identified patterns of clinical presentation and organ system involvement. These patterns may help differentiate between MIS-C and COVID-19

    Neurologic Involvement in Children and Adolescents Hospitalized in the United States for COVID-19 or Multisystem Inflammatory Syndrome

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Importance Coronavirus disease 2019 (COVID-19) affects the nervous system in adult patients. The spectrum of neurologic involvement in children and adolescents is unclear. Objective To understand the range and severity of neurologic involvement among children and adolescents associated with COVID-19. Setting, Design, and Participants Case series of patients (age <21 years) hospitalized between March 15, 2020, and December 15, 2020, with positive severe acute respiratory syndrome coronavirus 2 test result (reverse transcriptase-polymerase chain reaction and/or antibody) at 61 US hospitals in the Overcoming COVID-19 public health registry, including 616 (36%) meeting criteria for multisystem inflammatory syndrome in children. Patients with neurologic involvement had acute neurologic signs, symptoms, or diseases on presentation or during hospitalization. Life-threatening involvement was adjudicated by experts based on clinical and/or neuroradiologic features. Exposures Severe acute respiratory syndrome coronavirus 2. Main Outcomes and Measures Type and severity of neurologic involvement, laboratory and imaging data, and outcomes (death or survival with new neurologic deficits) at hospital discharge. Results Of 1695 patients (909 [54%] male; median [interquartile range] age, 9.1 [2.4-15.3] years), 365 (22%) from 52 sites had documented neurologic involvement. Patients with neurologic involvement were more likely to have underlying neurologic disorders (81 of 365 [22%]) compared with those without (113 of 1330 [8%]), but a similar number were previously healthy (195 [53%] vs 723 [54%]) and met criteria for multisystem inflammatory syndrome in children (126 [35%] vs 490 [37%]). Among those with neurologic involvement, 322 (88%) had transient symptoms and survived, and 43 (12%) developed life-threatening conditions clinically adjudicated to be associated with COVID-19, including severe encephalopathy (n = 15; 5 with splenial lesions), stroke (n = 12), central nervous system infection/demyelination (n = 8), Guillain-Barré syndrome/variants (n = 4), and acute fulminant cerebral edema (n = 4). Compared with those without life-threatening conditions (n = 322), those with life-threatening neurologic conditions had higher neutrophil-to-lymphocyte ratios (median, 12.2 vs 4.4) and higher reported frequency of D-dimer greater than 3 μg/mL fibrinogen equivalent units (21 [49%] vs 72 [22%]). Of 43 patients who developed COVID-19–related life-threatening neurologic involvement, 17 survivors (40%) had new neurologic deficits at hospital discharge, and 11 patients (26%) died. Conclusions and Relevance In this study, many children and adolescents hospitalized for COVID-19 or multisystem inflammatory syndrome in children had neurologic involvement, mostly transient symptoms. A range of life-threatening and fatal neurologic conditions associated with COVID-19 infrequently occurred. Effects on long-term neurodevelopmental outcomes are unknown
    • …
    corecore