563 research outputs found
Three members of Opisthomonorcheides Parukhin, 1966 (Digenea: Monorchiidae) from carangid fishes (Perciformes) from Indonesia, with a review of the genus
Three species of Opisthomonorcheides Parukhin, 1966 are reported for the first time from Indonesian waters: O. pampi (Wang, 1982) Liu, Peng, Gao, Fu, Wu, Lu, Gao & Xiao, 2010 and O. ovacutus (Mamaev, 1970) Machida, 2011 from Parastromateus niger (Bloch), and O. decapteri Parukhin, 1966 from Atule mate (Cuvier). Both O. pampi and O. ovacutus can now be considered widespread in the Indo-Pacific region, with earlier records of these species being from Fujian Province, China and Penang, Malaysia, respectively. We redescribe O. decapteri from one of its original hosts, Atule mate, off New Caledonia, and report this species from Jakarta Bay, Indonesia, extending its range throughout the Indian Ocean into the south-western Pacific. All three species possess a genital atrium that is long, sometimes very long, and a genital pore that is located in the forebody. This validates the interpretation that the original description was erroneous in reporting the genital pore in the hindbody, well posterior to the ventral sucker. These observations verify the synonymy of Retractomonorchis Madhavi, 1977 with Opisthomonorcheides. A major discrepancy between the species of Opisthomonorcheides is that some are described with the uterus entering the terminal organ laterally and some with it entering terminally; this feature needs further analysis. Based on the length of the genital atrium and the posterior extent of the vitellarium, the 27 species of Opisthomonorcheides considered valid can be divided into four groups. Among the 53 host records analysed, the families Carangidae (53% of records), Stromateidae (17%) and Serranidae (5.7%) are the most common; the reports are overwhelmingly from members of the Perciformes (91%), with further records in the Clupeiformes (5.7%), Gadiformes (1.9%) and Pleuronectiformes (1.9%). Two fish genera (Parastromateus Bleeker and Pampus Bonaparte) dominate the recorded hosts, with the black pomfret Parastromateus niger harbouring six species, the silver pomfret Pampus argenteus (Euphrasen) harbouring six, and the Chinese silver pomfret P. chinensis (Euphrasen) two. A host-parasite checklist is presented. We discuss the host-specificity of members of the genus, questioning some records such as that of O. decapteri in a deep-sea macrourid. We also comment on the morphological similarity, but phylogenetic distance, between the various Pomfret species, advancing the possibility that a series of host misidentifications has occurred. Sequences of the ITS2 rDNA gene generated for O. pampi and O. ovacutus are briefly discussed and molecular data are lodged in the GenBank database
Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and richness in coral reef fishes
The Great Barrier Reef holds the richest array of marine life found anywhere in Australia, including a diverse and fascinating parasite fauna. Members of one group, the trematodes, occur as sexually mature adult worms in almost all Great Barrier Reef bony fish species. Although the first reports of these parasites were made 100 years ago, the fauna has been studied systematically for only the last 25 years. When the fauna was last reviewed in 1994 there were 94 species known from the Great Barrier Reef and it was predicted that there might be 2,270 in total. There are now 326 species reported for the region, suggesting that we are in a much improved position to make an accurate prediction of true trematode richness. Here we review the current state of knowledge of the fauna and the ways in which our understanding of this fascinating group is changing. Our best estimate of the true richness is now a range, 1,100–1,800 species. However there remains considerable scope for even these figures to be incorrect given that fewer than one-third of the fish species of the region have been examined for trematodes. Our goal is a comprehensive characterisation of this fauna, and we outline what work needs to be done to achieve this and discuss whether this goal is practically achievable or philosophically justifiable
Insights into the nature of climate and vegetation changes over the last 28,000 years using combined pollen and leaf-wax biomarker analyses from the SW Iberian Margin
This thesis aims to enhance the current understanding of the response of SW Iberian ecosystems to abrupt and orbital-scale climate changes. The last ~28 thousand years can provide such insight, containing several abrupt North Atlantic climate events superimposed on orbital-scale global changes. This study presents new high-resolution pollen and leaf-wax n-alkane records combined with palaeoceanographic proxies from the same deep-sea cores (SHAK06-5K and MD01-2444) on the Southwestern (SW) Iberian Margin. The chronology of these records is based on high-resolution Accelerator Mass Spectrometry radiocarbon dating of planktonic foraminifer Globigerina bulloides from cores SHAK06-5K and MD01-2444. Changes in temperate and steppe records during the Last Glacial Maximum and subsequent deglaciation are closely coupled with changes in sea surface temperatures (SSTs), and global ice volume. This coupling continues during the onset of the Holocene, with the peak in thermophilous woodland lagging the boreal insolation maxima by ~2 kyr. This possibly arises from the persistence of residual high-latitude ice-sheets into the Holocene. A close correlation between rapid oscillations in pollen percentages and millennial/centennial-scale variations in SSTs, planktonic 18O, and lithology suggests extrinsically-forced SW Iberian ecosystem changes in response to abrupt North Atlantic climate events. In contrast, the abrupt thermophilous woodland decline at ~7.8 thousand years before present (cal ka BP) indicates an intrinsically-mediated abrupt vegetation response to the gradually declining boreal insolation, resulting in the crossing of an ecological threshold. The leaf-wax n-alkane 13C record from SHAK06-5K combined with the pollen record from the same core and modern leaf-wax n-alkane 13C data from SW Iberia suggest that this geochemical proxy is directly or indirectly driven by SW Iberian climate variations. Two potential mechanisms are proposed: i) n-alkane 13C is directly controlled by changes in regional moisture availability; or ii) climate change leads to a turnover of plant species with inherently different n-alkane 13C signatures
- …
