7,083 research outputs found

    A trapped mercury 199 ion frequency standard

    Get PDF
    Mercury 199 ions confined in an RF quadrupole trap and optically pumped by mercury 202 ion resonance light are investigated as the basis for a high performance frequency standard with commercial possibilities. Results achieved and estimates of the potential performance of such a standard are given

    Large-Scale Advanced Prop-Fan (LAP) pitch change actuator and control design report

    Get PDF
    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the high inherent efficiency previously demonstrated by low speed turboprop propulsion systems may now be extended to today's higher speed aircraft if advanced high-speed propeller blades having thin airfoils and aerodynamic sweep are utilized. Hamilton Standard has designed a 9-foot diameter single-rotation Large-Scale Advanced Prop-Fan (LAP) which will be tested on a static test stand, in a high speed wind tunnel and on a research aircraft. The major objective of this testing is to establish the structural integrity of large-scale Prop-Fans of advanced construction in addition to the evaluation of aerodynamic performance and aeroacoustic design. This report describes the operation, design features and actual hardware of the (LAP) Prop-Fan pitch control system. The pitch control system which controls blade angle and propeller speed consists of two separate assemblies. The first is the control unit which provides the hydraulic supply, speed governing and feather function for the system. The second unit is the hydro-mechanical pitch change actuator which directly changes blade angle (pitch) as scheduled by the control

    The information content of gravitational wave harmonics in compact binary inspiral

    Get PDF
    The nonlinear aspect of gravitational wave generation that produces power at harmonics of the orbital frequency, above the fundamental quadrupole frequency, is examined to see what information about the source is contained in these higher harmonics. We use an order (4/2) post-Newtonian expansion of the gravitational wave waveform of a binary system to model the signal seen in a spaceborne gravitational wave detector such as the proposed LISA detector. Covariance studies are then performed to determine the ultimate accuracy to be expected when the parameters of the source are fit to the received signal. We find three areas where the higher harmonics contribute crucial information that breaks degeneracies in the model and allows otherwise badly-correlated parameters to be separated and determined. First, we find that the position of a coalescing massive black hole binary in an ecliptic plane detector, such as OMEGA, is well-determined with the help of these harmonics. Second, we find that the individual masses of the stars in a chirping neutron star binary can be separated because of the mass dependence of the harmonic contributions to the wave. Finally, we note that supermassive black hole binaries, whose frequencies are too low to be seen in the detector sensitivity window for long, may still have their masses, distances, and positions determined since the information content of the higher harmonics compensates for the information lost when the orbit-induced modulation of the signal does not last long enough to be apparent in the data.Comment: 13 pages, 5 figure

    Angular Resolution of the LISA Gravitational Wave Detector

    Get PDF
    We calculate the angular resolution of the planned LISA detector, a space-based laser interferometer for measuring low-frequency gravitational waves from galactic and extragalactic sources. LISA is not a pointed instrument; it is an all-sky monitor with a quadrupolar beam pattern. LISA will measure simultaneously both polarization components of incoming gravitational waves, so the data will consist of two time series. All physical properties of the source, including its position, must be extracted from these time series. LISA's angular resolution is therefore not a fixed quantity, but rather depends on the type of signal and on how much other information must be extracted. Information about the source position will be encoded in the measured signal in three ways: 1) through the relative amplitudes and phases of the two polarization components, 2) through the periodic Doppler shift imposed on the signal by the detector's motion around the Sun, and 3) through the further modulation of the signal caused by the detector's time-varying orientation. We derive the basic formulae required to calculate the LISA's angular resolution ΔΩS\Delta \Omega_S for a given source. We then evaluate ΔΩS\Delta \Omega_S for two sources of particular interest: monchromatic sources and mergers of supermassive black holes. For these two types of sources, we calculate (in the high signal-to-noise approximation) the full variance-covariance matrix, which gives the accuracy to which all source parameters can be measured. Since our results on LISA's angular resolution depend mainly on gross features of the detector geometry, orbit, and noise curve, we expect these results to be fairly insensitive to modest changes in detector design that may occur between now and launch. We also expect that our calculations could be easily modified to apply to a modified design.Comment: 15 pages, 5 figures, RevTex 3.0 fil

    Effects of finite arm-length of LISA on analysis of gravitational waves from MBH binaries

    Get PDF
    Response of an interferometer becomes complicated for gravitational wave shorter than the arm-length of the detector, as nature of wave appears strongly. We have studied how parameter estimation for merging massive black hole binaries are affected by this complicated effect in the case of LISA. It is shown that three dimensional positions of some binaries might be determined much better than the past estimations that use the long wave approximation. For equal mass binaries this improvement is most prominent at \sim 10^5\sol.Comment: 10 pages, 3 figures, to appear in Phys.Rev.

    RHIC Physics with the Parton Cascade Model

    Full text link
    We present an analysis of the net-baryon number rapidity distribution and of direct photon emission in the framework of the Parton Cascade Model.Comment: 4 pages 4 figures included, proceedings of QM 200

    Price Indexes for Medical Care Goods and Services: An Overview of Measurement Issues

    Get PDF
    We review in considerable detail the conceptual and measurement issues that underlie construction of medical care price indexes in the U.S., particularly the medical care consumer price indexes (MCPIs) and medical-related producer price indexes (MPPIs). We outline salient features of the medical care marketplace, including the impacts of insurance, moral hazard, principal-agent relationships, technological progress and organizational changes. Since observed data are unlikely to correspond with efficient outcomes, we discuss implications of the failure of transactions data in this market to reveal reliable marginal valuations, and the consequent need to augment traditional transactions data with information based on cost-effectiveness and outcomes studies. We describe procedures currently used by the BLS in constructing MCPIs and MPPIs, including recent revisions, and then consider alternative notions of medical care output pricing that involve the price or cost of an episode of treatment, rather than prices of fixed bundles of inputs. We outline features of a proposed new experimental price index -- a medical care expenditure price index -- that is more suitable for evaluation and analyses of medical care cost changes, than are the current MCPIs and MPPIs. We conclude by suggesting future research and measurement issues that are most likely to be fruitful.
    • …
    corecore