36 research outputs found

    Direction dependent Point spread function reconstruction for Multi-Conjugate Adaptive Optics on Giant Segmented Mirror Telescopes

    Get PDF
    Modern Giant Segmented Mirror Telescopes (GSMT) like the Extremely Large Telescope (ELT), currently under construction depend heavily on Adaptive Optics (AO) systems to correct for atmospheric turbulence. To be able to correct wider fields of view (FoV), Multi-Conjugate Adaptive Optics (MCAO) systems were introduced, which use multiple guide stars to obtain an almost uniform correction over the FoV. However, a residual blur remains in the astronmical images due to the time delay stemming from the wavefront sensor (WFS) integration time and temporal response of the deformable mirror(s) (DM). This results in a blur which can be mathematically described by a convolution of the true image with the point spread function (PSF). Due to the nature of the atmosphere and its correction, the PSF is spatially varying. In this paper, we present an algorithm for MCAO PSF reconstruction adapted to the needs of GSMTs in a storage efficient way. In particular, the PSF reconstruction algorithm for Single Conjugate Adaptive Optics (SCAO) from [40] is combined with an algorithm for atmospheric tomography from [33] to obtain a direction dependent reconstruction of the post-AO PSF. Results obtained in an end-to-end simulation tool show qualitatively good reconstruction of the PSF compared to the PSF calculated directly from the simulated incoming wavefront. Furthermore, the used algorithm has a reasonable runtime and memory consumption.Comment: submitted for publicatio

    Ultraviolet Complete Quantum Gravity

    Full text link
    An ultraviolet complete quantum gravity theory is formulated in which vertex functions in Feynman graphs are entire functions and the propagating graviton is described by a local, causal propagator. The cosmological constant problem is investigated in the context of the ultraviolet complete quantum gravity.Comment: 11 pages, no figures. Changes to text. Results remain the same. References added. To be published in European Physics Journal Plu

    Trying to Grasp a Sketch of a Brain for Grasping

    Get PDF
    Ritter H, Haschke R, Steil JJ. Trying to Grasp a Sketch of a Brain for Grasping. In: Sendhoff B, ed. Creating Brain-Like Intelligence. Lecture Notes in Artificial Intelligence; 5436. Berlin, Heidelberg: Springer; 2009: 84-102

    A high force miniature gripper fabricated via shape deposition manufacturing

    No full text

    Mechatronic Design of an Upper Limb Prosthesis with a Hand

    No full text

    Interactive Robot Programming Based on Human Demonstration and Advice

    No full text

    Reality-based models for vibration feedback in virtual environments

    No full text

    PACT: an experiment in integrating concurrent engineering systems

    No full text
    corecore