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Abstract
* † - -Fake footnotes to get them to show up on this page -  this is white
Effective design of modern systems requires the

systematic application of design resources throughout a
product's life-cycle.  Information obtained from the use of
these resources is used for the decision-making processes of
Concurrent Engineering.  Integrated computing environments
facilitate the acquisition, organization and use of required
information.  State-of-the-art computing technologies provide
the basis for an Intelligent Multi-disciplinary Aircraft
Generation Environment (IMAGE) described in this paper.
IMAGE builds upon existing agent technologies by adding a
new component called a model.  With the addition of a model,
the agent can provide accountable resource utilization in the
presence of increasing design fidelity.  Agent fundamentals are
illustrated with a zeroth-order agent example.  A CATIA™-
based agent is described to demonstrates that agent
technologies can be scaled to include large and complex
proprietary resources.  Likewise, multi-proprietary resource
systems are demonstrated with an aircraft component
modeling system integrating CATIA and ORACLE™ and
with a High Speed Civil Transport visualization system
linking CATIA, FLOPS, and ASTROS.  These examples
illustrate the important role of the agent technologies used to
implement IMAGE, and together they demonstrate that
IMAGE can provide an integrated computing environment for
the design of open engineering systems.

Background

Concurrent Engineering (CE) is an engineering approach
that formalizes a concurrent decision-making process, as
shown in Figure 1.1   Product and process driven engineering
tasks provide information while decision-support methods are
used to make decisions.  A computing environment facilitates
the acquisition, organization and application of information
and integrates together the engineering processes.
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Many requirements are imposed on a computer
environment by the nature of the product and process trades
that occur throughout the life-cycle of open engineering
systems.  The most demanding requirements include the
elements of scalability, support for increasing fidelity of
design, and support of an increasingly complex product data
model.

A number of pilot projects have been implemented that
investigate integrated computing issues.  These projects
include integrated design frameworks (FIDO2,
HiSAIR/Pathfinder3,4, PACT5, Designworld6, Prism7),
modular conceptual design systems (ACSYNT8, FLOPS9), and
quasi-procedural systems (PASS10,11).  At the Aerospace
Systems Design Laboratory (ASDL), two design frameworks
are being developed to investigate life-cycle design.
LEGEND (Laboratory Environment for the Generation,
Evaluation, and Navigation of Design) is a prototype system
for quantifying, developing, and instantiating designs.1 2

IMAGE13 (Intelligent Multi-disciplinary Aircraft Generation
Environment), which is the subject of this paper, is currently
under development by the authors.  IMAGE addresses two
fundamental issues: formulation of a design model and
development of enabling computational technologies to
implement a design environment.  The latter is the subject of
this paper.

IMAGE research has shown that one of the key
technologies necessary for implementation of an integrated
computing environment is the agent.  Building on existing
agent definitions, IMAGE adds a new component: the model.
With a model, agents can be used flexibly to generate design
information and can be held accountable for their actions.
This paper will define key characteristics of these extended
agents, show the fundamental importance of agents, and
illustrate the benefits of using agents in integrated computing
environments.

Agent Definition

Agents are often described by their ability to interact with
other agents in a computer environment, as given by the
following definition:5

"[An agent is] a computer program that communicates
with external programs exclusively via a pre-defined
protocol."

Communications is a key requirement, and agents must
conform to an ontology.  Yet, this definition fails to dictate
sufficient requirements for effective support of heterogeneous
design resources and decision-making processes.
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Figure 1.  Concurrent Engineering

An expanded agent definition can be found in
LEGEND:12

An agent is a resource that has been modeled and
wrapped for inclusion in a distributed design
environment.  The environment dictates requirements
for context-oriented documentation and publication
and experience mechanisms.

This definition outlines use of resources for the generation of
accountable information.  However, the definition still lacks
specifications to insure that the agent can be used with a
variety of resources throughout a product's life-cycle.

The following definition is proposed by the authors:
An agent is a resource that has been modeled and
wrapped for inclusion in a distributed design
environment.  Agent design requires a designer-
centered, bi-directional wrap that is independent of
proprietary boundaries and capable of supporting
increasing fidelity models.

This definition characterizes an agent by its components and
behavior.  There are three agent components: the resource, the
model, and the wrap. Agents must accommodate information
obtained from heterogeneous resources and must apply this to
design models of increasing fidelity across a product's life-
cycle.  Agents are one of the key integration tools for a
distributed, designer-centered, multi-tasking design
environment.  It will also be shown later in this paper that
agents are able to generate design information and make
decisions while maintaining accountability for all actions.

For the first time the role of proprietary resources and
information is explicitly stated in the agent definition.
Proprietary resources are generally stand-alone in nature, with

limited communications capabilities, and preserve software
rights through a number of advanced computing techniques.
Together, these present a formidable challenge to
implementation of integrated design environments.  Finally, it
should be noted that, in addition, proprietary information must
be accommodated and secured in open, integrated
environments.

Agent Components

As defined in IMAGE, a generalized agent is either a tool
or an agent.  Both incorporate resources and are used to
produce design information or make design decisions.  A tool
is the most basic type of generalized agent and is comprised of
a resource, typically a computer program, and a wrap,
typically program utilities used for communicating with other
tools and agents.  In IMAGE an agent, as shown in Figure 2, is
a tool that, along with a resource and a wrap, also includes a
model.  With the addition of the model, the agent can generate
accountable design information to be used for making
decisions.  Accountability was first introduced in LEGEND12,
and accountable information is defined in IMAGE as
information with the context in which it was developed.
Context, in this situation, includes the "what, why, when and
how" information attributes on which accountability can be
based.

Agents and tools are the basic elements used in IMAGE to
implement an integrated computing environment.  Agents
operate on the basis of the models that they contain and
therefore can provide accountability for the information they
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produce.  Tools, on the other hand, which do not include a
model can produce only information with no context and
therefore no inherent accountability.  Tools can be as equally
useful as agents, but they must be used by either other agents
or design experts, either of which must provide the appropriate
accountability.

Agent terminology is still evolving at this point in
IMAGE development.  A few simplified definitions that show
the relationship among definitions found in this paper and
other definitions are listed below.  The following definitions
are used in IMAGE:

Agent - A resource that has been modeled and
wrapped

Tool - A resource that has been wrapped
The three basic components of an agent are:

Resource - A computer program that does analysis
Wrap - Making resources talk to each other
Model - Engineering assumptions used to

describe a process
Another agent definition used by others is the following:

Agent - A resource that has been wrapped (for
communication by a pre-defined
protocol),

while computer scientists sometimes use the following:
Tool - A resource.

As will be shown below, IMAGE definitions for agents
and tools offer advanced capabilities over standard use.

Model

The model adds context to the information produced by
an agent and, therefore, provides accountability.  Models are
typically based on mathematical formulations, engineering
principles, or geometrical constructions.  In addition, models
may also include limitations, units, and details of
implementation of the agent.

Resource

Resources are entities that produce additional design
information based on existing information.  Typical resources

include off-the-shelf computer programs such as ASTROS (a
structural optimization code), FLOPS (an aircraft convergence
code), ACSYNT (an aircraft convergence code), CONMIN (an
optimization package), CATIA (a three-dimensional geometric
modeling, simulation and analysis package), and ORACLE (a
relational database). Often overlooked, the design expert (the
designer) and design experience are also design resources.
Knowledge-based systems can be used to capture design
expert knowledge, while "lessons learned" can be captured in
experience-related resources.

Wrap

The wrap manages information generation within an agent
and transfer between agents.  The wrap implements bi-
directional information exchange within the design
environment.4  For computer-based resources, the
communication channel needs to be accessible through the
multi-user, multi-platform, multi-language, networked
workstation systems used in current design systems.  A tool
that has been successfully used for inter-agent
communications in IMAGE is the Tk/tcl utility package
developed at U.C.-Berkeley.14  [Note: Tk/tcl is an interpretive,
X11 windowing system.]

The wrap is also responsible for the bi-directional
exchange of information within agent resources.  Run-time
access to agent resources is necessary for the automation of
information exchange.

As mentioned earlier, the accessibility of design resources
varies significantly between proprietary and non-proprietary
codes.  Nonproprietary codes are often easier to wrap because
source code level access is available.  Therefore, wrapping
utilities can be directly integrated by restructuring the source
code itself.  In contrast, proprietary resources are usually
provided in an object/executable form.  Fortunately, internal
resources of mature commercial software products can often
be integrated with link-edit procedures, and this can form the
basis for agent wrapping.

As will be discussed in more detail later, the use of
proprietary resources becomes prevalent in the later stages of
design.  Therefore, the issues concerned with the wrap of these
resources must be addressed if the resources are to be
integrated into a design environment.  In addition, the ability
to wrap proprietary resources presents a considerable step
toward design automation.15

Agent Importance

There are two fundamental properties that make the agent
an effective integration tool in a computing environment.
First, agents can provide accountable resource use through the
incorporation of the model.  Second, new IMAGE wrapping
technologies permit agents based on proprietary resources to
be utilized at any point in the life-cycle of design.

Resource Interaction

The model provides accountable resource utilization by
providing context to information generated by the resource.
Context is provided because the agent incorporating the
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resource is aware of its scope, assumptions, and limitations
through the specifications of its model.  Without this structure
it is often difficult to avoid eventual degeneration into the
"garbage in, garbage out" syndrome.

Life-Cycle Utilization

As shown in Figure 3, traditional systems that employ
both agents and tools primarily operate in the conceptual stage
of design.2-10  The design resources used in these systems are
mostly non-proprietary codes, as illustrated in Figure 4.
However, computing environments must also incorporate
proprietary resources that predominate later in a product's
design life-cycle, as also seen in Figure 4.  As discussed
earlier, the integration of these kinds of resources is more
difficult than that for nonproprietary resources.  However,
IMAGE incorporates new technologies to wrap proprietary
resources.  Therefore, proprietary agents can be used
throughout a product's life-cycle, see Figure 3.
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Agent Examples

To demonstrate the construction of agents and the
effectiveness of agent systems such as IMAGE, a number of
examples are illustrated.  Agent fundamentals are first
illustrated with a "zeroth-order" agent example.  A CATIA-
based agent is shown next and demonstrates that agent
technologies can be scaled to include large and highly
complex proprietary resources.  Finally, multi-proprietary
resource systems are demonstrated with an aircraft component
modeling system integrating CATIA and ORACLE and with a

High Speed Civil Transport visualization system linking
CATIA, FLOPS, and ASTROS.

Example 1:  Zeroth-Order Agent

The zeroth-order agent, or tool, is characterized by two
features:  the model is not explicitly defined in the agent but
rather is implicitly defined in the resource, and the
input/output stream of the resource is wrapped.  Since the
model is implicitly defined, any information generated by the
resource lacks accountability.  For this reason, the differences
between a zeroth-order agent and a tool are indistinguishable.

A points profile agent is used to illustrate the zeroth-order
agent.  As shown in Figure 5, the points profile agent returns a
set of normalized coordinate pairs representing a 2D unit circle
(extension to circles of arbitrary diameter is simple).

N = 4 N = 8

Figure 5.  Points Profile

Model

The points profile example uses a simple mathematical
model, as shown in Figure 6.  When queried for the circle
description, the agent simply computes the normalized
coordinate pairs based on the number of points needed and a
uniform angular distribution.

Resource

In this example, the resource implements the
mathematical model in the C language, as seen in Figure 7.
The program reads the number of profile points from the
command line and writes the normalized coordinate pairs to
standard output.  Other implementations could be done in C++,
FORTRAN, BASIC, PASCAL, UNIX shells, etc.  The
specific choice of implementation is not important as long as
the resource acquires data from the command line and returns
values through standard output.

Since the program is based on an implicit model, the
model cannot be changed without updating the resource.  This
model-resource dependency can become a critical issue as
design fidelity increases and may cause computing resources
to be locked into a single design phase.  For example, circles



5

ø

(Xn,Yn)

ø = (n-1) 2*π/N

Xn = cos(ø)
Yn = sin(ø)

n = 1...N

Mathematical Model

Figure 6.  Points Profile - Model

/*

 *This program determines the points 

 *profile for a unit circle.  N is

 *given on the command line.

 */

#include <stdio.h>

#include <math.h>

#define PI=3.141593

main (int argc,char *argv[])

{

int N=atoi(argv[1]);

int n;

for ( n = 1; n <= N; n++)

   printf(" { %f %f } ",

      cos( (n-1)*2*PI/N),

      sin( (n-1)*2*PI/N));

}

C Program

Figure 7.  Points Profile - Resource

may be used to represent lightening and access holes in an
outboard wing rib during preliminary design, as shown in
Figure 8a.  However, during detailed design, more
complicated shapes may be used to represent those features, as
shown in Figure 8b.  The unit circle mathematical
representation used for the zeroth-order agent in this example
will not support the higher fidelity representations.  A new

resource would need to be developed based on an increased
fidelity mathematical model.

a)  Preliminary Design

b)  Detailed Design

Figure 8.  Wing Rib Representations

Wrap

The wrap for the points profile example is done in Tk/tcl,
as shown in Figure 9.  When a request is made, the wrap
forwards the number of points through a Unix pipe to the
command line of the resource. Then, the coordinate pairs are
read from the standard output of the resource.  Tk/tcl was used
to wrap the resource since Tk/tcl provides agent
communication and input/output stream utilities.

#This procedure determines the points

#profile for a unit circle.  N is

#the number of points.

proc PointsProfile {N} {

set C-Program [open "|circle $N"]

set Profile [gets $C-Program]

return $Profile

}

tcl Interpretive Script

Figure 9.  Points Profile - Wrap

As shown in Figure 10, the points profile example is
executed in the following manner:

1) The user or another agent queries the points profile
agent wrap with the value "PointsProfile 4".

2) The wrap gives the resource the value 4 on the
resource command line.

3) The resource calculates the normalized coordinate
pairs based on the implicit mathematical model.

4) The coordinate pairs are returned to the wrap
through standard output.

5) The wrap returns the coordinate pairs to the
querying user or agent.
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#This procedure determines the points

#profile for a unit circle.  N is

#the number of points.

proc PointsProfile {N} {

set C-Program [open "|circle 
$N"]

set Profile [gets $C-Program]

return $Profile

}

/*

 *This program determines the points 

 *profile for a unit circle.  N is

 *given on the command line.

 */

#include <stdio.h>

#include <math.h>

#define PI=3.141593

main (int argc,char *argv[])

{

int N=atoi(argv[1]);

int n;

for ( n = 1; n <= N; n++)

   printf(" { %f %f } ",

      cos( (n-1)*2*PI/N),

      sin( (n-1)*2*PI/N));

}

ø

(Xn,Yn)

ø = (n-1) 2*π/N

Xn = cos(ø)
Yn = sin(ø)

n = 1...N

PointsProfile 4

{ 1 0 } { 0 1 } { -1 0 } { 0 -1 } 

4

{ 1 0 } { 0 1 } { -1 0 } { 0 -1 } 

Figure 10.  Points Profile - Execution

A number of important operating characteristics can be
seen in this example:

1) The points profile wrap can be queried by any other
agent or user on the network that understands the
meaning of PointsProfile.

2) The resource can be changed without modifying
the wrap and this can be done at run-time.

3) The model cannot be changed without modifying
the resource.

Example 2:  CATIA Agent

To demonstrate that IMAGE agent technology can be
extended to include complex proprietary resources, CATIA
was modeled and wrapped for use as a Passively Controlled
Lifting Surface (PCLS) visualization agent, see Figure 11.
The PCLS visualization agent was first used in LEGEND12 to
demonstrate its use in the design of a passively controlled
wing.  The CATIA agent was developed utilizing a model, the
CATIA resources, and a wrap.

Model

The PCLS solid model is based on the CATIA concept of
a volume transformation.  Because of the complexity of the
lifting surface definition, Boolean solids could not be used for
the visualization.  In a volume transformation, an object is
represented by an approximate solid computed in CATIA
directly from the exact volume.  A volume is constructed from
faces which in turn are defined by the edges that enclose
simple or multiply connected regions of planar or complex
surfaces.  This relationship is shown in Figure 12.  There are
five solid entities that are used to visualize a PCLS: solid

wing, solid wing with skin thickness, solid wingbox, solid
wingbox with thickness, and foam filler.  From the five solid
entities, accountability is given to PCLS visualizations in
CATIA.  Not only is the PCLS modeled in CATIA, but
information is made available to querying agents and tools
regarding the visualization mechanism that is used.  Such
information would include the type of solid model
representation, the solid's parametric definition, and the
program used for visualization.

It should be noted that an almost unlimited number of
different models could be defined for use with CATIA
resources.  This particular model allows for the visualization
of the PCLS.

Figure 11.  PCLS in CATIA
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Resource

The CATIA GEOmetry (CATGEO) interface provides the
resources required for the PCLS visualization, see Figure 13.
The CATGEO interface functions allow the internal CATIA
model database to be queried through user-defined, link-
editable procedures.  There are over 1500 CATGEO function
calls available to the user.  The PCLS visualization agent
requires approximately 25 of them.

CATIA GEOmetry (CATGEO) provides a 
mechanism for the user to interact 
with the model database.  CATGEO 
consists of procedural calls made by 
linked, user-defined subroutines.

Example CATGEO call (draws a line 
between two points):

CALL GCWLN(MNUM,PT1,LIM1,PT2,LIM2,ELEM,IER,*1000)

FORTRAN Utilities

Figure 13.  PCLS - Resource

Wrap

The PCLS visualization agent is implemented with a
Tk/tcl wrap of the model (description of the five solids
entities) and the appropriate CATGEO resources in CATIA.

To integrate the CATIA resources into Tk/tcl, a single
function was written that dynamically accesses all of the
CATGEO functions, as shown in Figure 14.  The wrap is
called the CATIA Interactive Interface (CII).  Because the
wrap accesses all 1500 of the available CATGEO functions,
the wrap can readily be used to build other agents having
different models.

A single function load, called the 
CATIA Interactive Interface (CII), 
has been developed that provides 
bi-directional CATGEO access to a 
Tk/tcl environment based on defined 
model utilities.

C - FORTRAN Program
tcl Interpretive Script

Figure 14. PCLS - Wrap

The Passively Controlled Lifting Surface visualization
agent operates in the following manner, as shown in Figure 15:

1) The user or another agent queries the PCLS agent
wrap with a parametric description of the PCLS.

2) The wrap gives the model the primitive PCLS
solids: SolidFromProfilesWithThickness,
FoamFiller, and WingBox.

3) The model translates the primitive ideas into a
complex solid model definition.

4) The complex solid is generated in the CATIA
geometry resource.  At this point, the PCLS can be
visualized in CATIA.

5) A unique identifier for the solid is generated in
CATIA by the resource.

6) The identifier is returned to the model.
7) The model forwards the identifier to the wrap.
8) The wrap returns the identifier to the calling agent

as an instantiation of the visualization in CATIA.

A number of enhancements to CATIA were discovered
during the development of the PCLS visualization agent:

1) It is possible to create a "function load" without
having to link the load into CATIA (with the dcg
utility).

2) A CATIA session does not have to be terminated
and re-started for load generation to take place.
Traditional CATIA loads required that CATIA be
stopped so that a link-edit procedure can be done.

3) Dependence on the CATIA model architecture
becomes less stringent because more resources (for
instance, a database) become available through the
use of agents.
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CATIA: Wrap

C-FORTRAN Program
tcl Interpretive Script

CATIA: Model

tcl Interpretive Script

CATIA: Resource

FORTRAN Utilities

PCLS

SolidFrom
Profiles . . .

12
CALL GCWLN()
       . . .12

Figure 15.  PCLS - Execution

Example 3:  CATIA Agent / ORACLE Tool

An aircraft component visualization system, named
AIRCRAFT, couples a CATIA agent with an ORACLE tool,
as illustrated in Figure 17.  The CATIA agent is similar to the
PCLS visualization agent, except that wireframe
representations are used in place of solids.  The ORACLE tool
is a wrap of the SQL resources in ORACLE without an
associated model.  The ORACLE tool is used to store
parametric values associated with the various components of
an aircraft.  The system demonstrates the capability for
integrating multiple proprietary resources in an agent-based
environment.

Example 4:  CATIA / FLOPS / ASTROS Visualization System

The IMAGE agent technology was used in another ASDL
project to create a High Speed Civil Transport (HSCT)
visualization system.16  The system utilizes CATIA as a
visualization agent, FLOPS to create HSCT geometry, and
ASTROS to develop a wing structure finite element
representation.  A sample HSCT configuration is shown in
Figure 16.  A standard solid model of the HSCT and a
wireframe representation of the wing structure FEM can be
generated in approximately five minutes using this system.
The HSCT visualization system demonstrates the capability
for integrating both proprietary and nonproprietary resources
in an agent-based environment. Figure 16.  HSCT Visualization



9

Figure 17.  CATIA Agent / ORACLE Tool

Conclusions

The agent is one of the key technologies required for the
implementation of integrated computing environments for
Concurrent Engineering.  The agent as defined in IMAGE has
three basic components: the resource, the model, and the wrap.
IMAGE agents formalize the role of proprietary resources in
the implementation of computational design environments.
Finally, IMAGE uses the agent to generate accountable
information (information with context) that can be used
throughout a product's life-cycle.

A PCLS visualization agent illustrates the successful
development of an agent that is based on a proprietary product
(CATIA).  An aircraft component visualization system and a
High Speed Civil Transport visualization system show that the
coupling of proprietary and nonproprietary agents is feasible.
These examples illustrate the important role that agents can
and will play in the design of open engineering systems.
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