156 research outputs found

    Physics of Polymorphic Transitions in CeRuSn

    Full text link
    We report a detailed study of the polymorphic transitions in ternary stannide CeRuSn on high quality single crystals through a combination of X-ray diffraction experiments conducted at 300, 275 and 120 K, and measurements of the thermal expansion, magnetization, and resistivity, along main crystallographic axes. In addition, the transition was followed as a function of pressure up to 0.8 GPa. The present X-ray diffraction data show that the room temperature polymorph consists of the lattice doubled along the c axis with respect to the CeCoAl-type structure consistent with previous reports. Upon cooling, the compound undergoes two successive transitions, first to a quintuple (290 K) and than to a triple CeCoAl superstructure at 225 K. The transitions are accompanied by a tremendous volume change due to a strong shrinking of the lattice along the c axis, which is clearly observed in thermal expansion. We advance arguments that the volume collapse originates from an increasing number of crystallographically inequivalent Ce sites and the change of ratio between the short and long Ce-Ru bonds. The observed properties of the polymorphic transition in CeRuSn are reminiscent of the transition in elementary Cerium, suggesting that similar physics, i.e., a Kondo influenced transition and strong lattice vibrations might be the driving forces

    Non Fermi Liquid behavior in the under-screened Kondo model

    Full text link
    Using the Schwinger boson spin representation, we reveal a new aspect to the physics of a partially screened magnetic moment in a metal, as described by the spin SS Kondo model. We show that the residual ferromagnetic interaction between a partially screened spin and the electron sea destabilizes the Landau Fermi liquid, forming a singular Fermi liquid with a 1/(Tln4(TK/T))1/ (T \ln ^{4} (T_{K}/T)) divergence in the low temperature specific heat coefficient CV/TC_{V}/T. A magnetic field BB tunes this system back into Landau Fermi liquid with a Fermi temperature proportional to Bln2(TK/B)B \ln^2 (T_K/B). We discuss a possible link with field-tuned quantum criticality in heavy electron materials.Comment: References corrected. Minor changes to tex

    Effect of Autologous Conditioned Plasma Injections in Patients With Knee Osteoarthritis

    Get PDF
    Background: Autologous conditioned plasma (ACP) is a commercially available platelet concentrate with promising results from clinical trials. Purpose: To evaluate the clinical outcome after 3 consecutive injections of ACP in patients with knee osteoarthritis (OA) and study the influence of ACP composition and different patient factors as predictors of treatment effect. Study Design: Case series; Level of evidence, 4. Methods: This prospective case series included 260 patients (307 knees) who received ACP treatment for knee OA. The mean patient age was 51 ± 10 years. Improvement up to 12 months’ follow-up was measured using the Knee injury and Osteoarthritis Outcome Score (KOOS). ACP composition was analyzed in 100 patients. The predictive value of age, sex, history of knee trauma, Kellgren-Lawrence OA grade, body mass index, and ACP composition was evaluated using generalized estimating equations. Results: The mean overall KOOS improved from 38 ± 14 at baseline to 45 ± 18 at 3 months, 45 ± 18 at 6 months, and 43 ± 18 at 12 months (all P &lt;.05); 40% of patients achieved an improvement above the minimal clinically important difference (MCID) of 8 after 6 months and 33% after 12 months. The variation in ACP composition did not correlate with KOOS (P &gt;.05). Older age led to a greater clinical benefit (β = 0.27; P =.05), whereas bilateral treatment predicted worse outcomes (β = –5.6; P &lt;.05). Conclusion: The improvement in KOOS after treatment with ACP did not reach the MCID in most study patients. Older age was a predictor for better outcomes. The composition of ACP varied between patients but did not predict outcomes within the evaluated range. The study findings show the limited benefit of ACP treatment for knee OA and call for caution with routine use in clinical practice.</p

    Topological crossovers near a quantum critical point

    Full text link
    We study the temperature evolution of the single-particle spectrum ϵ(p)\epsilon(p) and quasiparticle momentum distribution n(p)n(p) of homogeneous strongly correlated Fermi systems beyond a point where the necessary condition for stability of the Landau state is violated, and the Fermi surface becomes multi-connected by virtue of a topological crossover. Attention is focused on the different non-Fermi-liquid temperature regimes experienced by a phase exhibiting a single additional hole pocket compared with the conventional Landau state. A critical experiment is proposed to elucidate the origin of NFL behavior in dense films of liquid 3^3He.Comment: 7 pages, 6 figure

    Break up of heavy fermions at an antiferromagnetic instability

    Full text link
    We present results of high-resolution, low-temperature measurements of the Hall coefficient, thermopower, and specific heat on stoichiometric YbRh2Si2. They support earlier conclusions of an electronic (Kondo-breakdown) quantum critical point concurring with a field induced antiferromagnetic one. We also discuss the detachment of the two instabilities under chemical pressure. Volume compression/expansion (via substituting Rh by Co/Ir) results in a stabilization/weakening of magnetic order. Moderate Ir substitution leads to a non-Fermi-liquid phase, in which the magnetic moments are neither ordered nor screened by the Kondo effect. The so-derived zero-temperature global phase diagram promises future studies to explore the nature of the Kondo breakdown quantum critical point without any interfering magnetism.Comment: minor changes, accepted for publication in JPS

    Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields

    Full text link
    Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau---Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.Comment: 17 pages, 17 figures. Dedicated to 100th anniversary of A.B.Migdal birthda

    Adaptation of the Landau-Migdal Quasiparticle Pattern to Strongly Correlated Fermi Systems

    Full text link
    A quasiparticle pattern advanced in Landau's first article on Fermi liquid theory is adapted to elucidate the properties of a class of strongly correlated Fermi systems characterized by a Lifshitz phase diagram featuring a quantum critical point (QCP) where the density of states diverges. The necessary condition for stability of the Landau Fermi Liquid state is shown to break down in such systems, triggering a cascade of topological phase transitions that lead, without symmetry violation, to states with multi-connected Fermi surfaces. The end point of this evolution is found to be an exceptional state whose spectrum of single-particle excitations exhibits a completely flat portion at zero temperature. Analysis of the evolution of the temperature dependence of the single-particle spectrum yields results that provide a natural explanation of classical behavior of this class of Fermi systems in the QCP region.Comment: 26 pages, 14 figures. Dedicated to 100th anniversary of A.B.Migdal birthda

    Kondo engineering : from single Kondo impurity to the Kondo lattice

    Full text link
    In the first step, experiments on a single cerium or ytterbium Kondo impurity reveal the importance of the Kondo temperature by comparison to other type of couplings like the hyperfine interaction, the crystal field and the intersite coupling. The extension to a lattice is discussed. Emphasis is given on the fact that the occupation number nfn_f of the trivalent configuration may be the implicit key variable even for the Kondo lattice. Three (P,H,T)(P, H, T) phase diagrams are discussed: CeRu2_2Si2_2, CeRhIn5_5 and SmS

    Behavior of the Quantum Critical Point and the Fermi-liquid Domain in the Heavy Fermion Superconductor CeCoIn5 studied by resistivity

    Full text link
    We report detailed very low temperature resistivity measurements on the heavy fermion compounds Ce_{1-x}La_{x}CoIn5 (x=0 and x=0.01), with current applied in two crystallographic directions [100] (basal plane) and [001] (perpendicular to the basal plane) under magnetic field applied in the [001] or [011] direction. We found a Fermi liquid (\rho \propto T^{2}) ground state, in all cases, for fields above the superconducting upper critical field. We discuss the possible location of a field induced quantum critical point with respect to Hc2(0), and compare our measurements with the previous reports in order to give a clear picture of the experimental status on this long debated issue.Comment: 17 pages, 7 figures accepted for publication in JPS

    Conforming to accreditation in Iranian hospitals

    Get PDF
    This paper examines the operation of an accreditation programme for hospitals in Iran. It explores the process of accreditation as a regulatory control system and analyses hospitals’ responses to this type of control. We draw on the notion of steering and argue that the accreditation system is transactional in nature. Our findings show that hospitals conform to the scheme, although they also resist some of its requirements. On a wider policy level, we suggest that accreditations offer the accreditor the opportunity to impact on how activities are undertaken, but hospitals require incentives in order to make the necessary organisational changes
    corecore