15 research outputs found

    RANTES Secretion by Gene-Modified Tumor Cells Results in Loss of Tumorigenicity In Vivo: Role of Immune Cell Subpopulations

    Full text link
    Overview summary Members of the chemokine superfamily mediate potent and selective chemoattraction of a variety of immune cell subsets, which is concentration dependent. This important and novel biologic activity raises the possibility of using chemokines as adjuvants in cancer vaccine strategies. We describe here the in vitro chemotactic capacity of RANTES for murine CD8+ tumor-infiltrating lymphocytes (TIL). Moreover, murine fibrosarcoma cells transfected with the cDNA encoding RANTES and secreting high levels of this chemokine become nontumorigenic in immunocompetent mice. The antitumor effect of RANTES is dependent on inherent tumor immunogenicity and is mediated through the participation of host-derived T cells and macrophages. Thus, the general chemoattractant properties exhibited by RANTES in vitro appear to be relevant in an in vivo model. These data warrant further investigation of other distinct members of the chemokine superfamily for their potential use, either alone or in combination, in gene therapy approaches that employ tumor cells as immunogens.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63285/1/hum.1996.7.13-1545.pd

    Effect of Bamlanivimab vs Placebo on Incidence of COVID-19 Among Residents and Staff of Skilled Nursing and Assisted Living Facilities: A Randomized Clinical Trial

    Get PDF
    IMPORTANCE Preventive interventions are needed to protect residents and staff of skilled nursing and assisted living facilities from COVID-19 during outbreaks in their facilities. Bamlanivimab, a neutralizing monoclonal antibody against SARS-CoV-2, may confer rapid protection from SARS-CoV-2 infection and COVID-19. OBJECTIVE To determine the effect of bamlanivimab on the incidence of COVID-19 among residents and staff of skilled nursing and assisted living facilities. DESIGN, SETTING, AND PARTICIPANTS Randomized, double-blind, single-dose, phase 3 trial that enrolled residents and staff of 74 skilled nursing and assisted living facilities in the United States with at least 1 confirmed SARS-CoV-2 index case. A total of 1175 participants enrolled in the study from August 2 to November 20, 2020. Database lock was triggered on January 13, 2021, when all participants reached study day 57. INTERVENTIONS Participants were randomized to receive a single intravenous infusion of bamlanivimab, 4200mg (n = 588), or placebo (n = 587). MAIN OUTCOMES AND MEASURES The primary outcomewas incidence of COVID-19, defined as the detection of SARS-CoV-2 by reverse transcriptase–polymerase chain reaction and mild or worse disease severity within 21 days of detection, within 8 weeks of randomization. Key secondary outcomes included incidence of moderate or worse COVID-19 severity and incidence of SARS-CoV-2 infection. RESULTS The prevention population comprised a total of 966 participants (666 staff and 300 residents) who were negative at baseline for SARS-CoV-2 infection and serology (mean age, 53.0 [range, 18-104] years; 722 [74.7%] women). Bamlanivimab significantly reduced the incidence of COVID-19 in the prevention population compared with placebo (8.5%vs 15.2%; odds ratio, 0.43 [95%CI, 0.28-0.68]; P < .001; absolute risk difference, −6.6 [95%CI, −10.7 to −2.6] percentage points). Five deaths attributed to COVID-19 were reported by day 57; all occurred in the placebo group. Among 1175 participants who received study product (safety population), the rate of participants with adverse events was 20.1% in the bamlanivimab group and 18.9% in the placebo group. The most common adverse events were urinary tract infection (reported by 12 participants [2%] who received bamlanivimab and 14 [2.4%] who received placebo) and hypertension (reported by 7 participants [1.2%] who received bamlanivimab and 10 [1.7%] who received placebo). CONCLUSIONS AND RELEVANCE Among residents and staff in skilled nursing and assisted living facilities, treatment during August-November 2020 with bamlanivimab monotherapy reduced the incidence of COVID-19 infection. Further research is needed to assess preventive efficacy with current patterns of viral strains with combination monoclonal antibody therapy

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value OBFC1indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes

    MHC Class I-restricted Recognition of a Melanoma Antigen by a Human CD4+ Tumor Infiltrating Lymphocyte

    No full text
    It is generally considered that MHC class I-restricted antigens are recognized by CD8+ T cells, whereas MHC class II-restricted antigens are recognized by CD4+ T cells. In the present study, we report an MHC class I-restricted CD4+ T cell isolated from the tumor infiltrating lymphocytes (TILs) of a patient with metastatic melanoma. TIL 1383 I recognized HLA-A2+ melanoma cell lines but not autologous transformed B cells or fibroblasts. The antigen recognized by TIL 1383 I was tyrosinase, and the epitope was the 368–376 peptide. Antibody blocking assays confirmed that TIL 1383 I was MHC class I restricted, and the CD4 and CD8 coreceptors did not contribute significantly to antigen recognition. TIL 1383 I was weakly cytolytic and secreted cytokines in a pattern consistent with it being a T_(h1) cell. The avidity of TIL 1383 I for peptide pulsed targets is 10–100-fold lower than most melanoma-reactive CD8+ T cell clones. These CD4+ T cells may represent a relatively rare population of T cells that express a T-cell receptor capable of cross-reacting with an MHC class I/peptide complex with sufficient affinity to allow triggering in the absence of the CD4 coreceptor

    MHC Class I-restricted Recognition of a Melanoma Antigen by a Human CD4+ Tumor Infiltrating Lymphocyte

    No full text
    It is generally considered that MHC class I-restricted antigens are recognized by CD8+ T cells, whereas MHC class II-restricted antigens are recognized by CD4+ T cells. In the present study, we report an MHC class I-restricted CD4+ T cell isolated from the tumor infiltrating lymphocytes (TILs) of a patient with metastatic melanoma. TIL 1383 I recognized HLA-A2+ melanoma cell lines but not autologous transformed B cells or fibroblasts. The antigen recognized by TIL 1383 I was tyrosinase, and the epitope was the 368–376 peptide. Antibody blocking assays confirmed that TIL 1383 I was MHC class I restricted, and the CD4 and CD8 coreceptors did not contribute significantly to antigen recognition. TIL 1383 I was weakly cytolytic and secreted cytokines in a pattern consistent with it being a T_(h1) cell. The avidity of TIL 1383 I for peptide pulsed targets is 10–100-fold lower than most melanoma-reactive CD8+ T cell clones. These CD4+ T cells may represent a relatively rare population of T cells that express a T-cell receptor capable of cross-reacting with an MHC class I/peptide complex with sufficient affinity to allow triggering in the absence of the CD4 coreceptor
    corecore