20 research outputs found

    The Death Domain Kinase RIP Protects Thymocytes from Tumor Necrosis Factor Receptor Type 2–induced Cell Death

    Get PDF
    Fas and the tumor necrosis factor receptor (TNFR)1 regulate the programmed cell death of lymphocytes. The death domain kinase, receptor interacting protein (rip), is recruited to the TNFR1 upon receptor activation. In vitro, rip−/− fibroblasts are sensitive to TNF-induced cell death due to an impaired nuclear factor κB response. Because rip−/− mice die at birth, we were unable to examine the effects of a targeted rip mutation on lymphocyte survival. To address the contribution of RIP to immune homeostasis, we examined lethally irradiated mice reconstituted with rip−/− hematopoietic precursors. We observed a decrease in rip−/− thymocytes and T cells in both wild-type C57BL/6 and recombination activating gene 1−/− irradiated hosts. In contrast, the B cell and myeloid lineages are unaffected by the absence of rip. Thus, the death domain kinase rip is required for T cell development. Unlike Fas-associated death domain, rip does not regulate T cell proliferation, as rip−/− T cells respond to polyclonal activators. However, rip-deficient mice contain few viable CD4+ and CD8+ thymocytes, and rip−/− thymocytes are sensitive to TNF-induced cell death. Surprisingly, the rip-associated thymocyte apoptosis was not rescued by the absence of TNFR1, but appears to be rescued by an absence of TNFR2. Taken together, this study implicates RIP and TNFR2 in thymocyte survival

    RIP Links TLR4 to Akt and Is Essential for Cell Survival in Response to LPS Stimulation

    Get PDF
    Receptor-interacting protein (RIP) has been reported to associate with tumor necrosis–associated factor (TRAF)2 and TRAF6. Since TRAF2 and TRAF6 play important roles in CD40 signaling and TRAF6 plays an important role in TLR4 signaling, we examined the role of RIP in signaling via CD40 and TLR4. Splenocytes from RIP−/− mice proliferated and underwent isotype switching normally in response to anti-CD40–IL-4 but completely failed to do so in response to LPS–IL-4. However, they normally up-regulated TNF-α and IL-6 gene expression and CD54 and CD86 surface expression after LPS stimulation. RIP−/− splenocytes exhibited increased apoptosis and impaired Akt phosphorylation after LPS stimulation. These results suggest that RIP is essential for cell survival after TLR4 signaling and links TLR4 to the phosphatidylinositol 3 kinase–Akt pathway

    Les meurtriers sexuels : Analyse comparative et nouvelles perspectives

    No full text
    Qu'est-ce qui pousse un individu à commettre un meurtre sexuel ? Quelles étaient les intentions du meurtrier au moment des faits ? Pourquoi une agression sexuelle dévie-t-elle vers l'homicide ? Cette étude, qui repose sur une analyse comparative des violeurs et des meurtriers sexuels, démontre que le meurtre sexuel dépend de la combinaison de facteurs développementaux, intentionnels et situationnels. La colère, la consommation d'alcool, la motivation sexuelle dans l'agression, le sadisme sont autant d'indices qui permettent de comprendre le meurtre sexuel. Cet ouvrage remet en question nombre d'idées reçues sur les meurtriers sexuels. Contrairement à ce que l'on aurait tendance à croire, les sadiques ne représentent qu'une minorité de meurtriers sexuels et les violeurs ont souvent la même histoire criminelle et les mêmes troubles de la personnalité que les meurtriers sexuels. En fait, le parcours criminel des meurtriers sexuels ressemble étrangement à celui des délinquants récidivistes et il apparaît difficile de tracer un profil précis qui les identifierait hors de tout doute possible. Théorique mais aussi pratique, cet ouvrage propose des stratégies d'enquêtes et d'interrogatoires en matière de meurtre sexuel

    The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2

    No full text
    The death domain kinase Rip1 is recruited to the tumor necrosis factor receptor type 1 and mediates the IkappaB kinase and p38 MAP kinase pathways. In response to tumor necrosis factor-alpha (TNF-alpha), we find Rip1 phosphorylated and ubiquitinated, suggesting that Rip1 phosphorylation may stimulate its ubiquitination. To address the contribution of the kinase activity of Rip1 to its ubiquitination and to TNF-alpha signaling, we introduced wild type Rip1 and a kinase-inactive form of Rip1, Rip1D138N, into rip1-/- murine embryonic fibroblast cells by retroviral infection. TNF-alpha-induced ubiquitination of Rip1 is observed in Rip1D138N cells, supporting the argument that Rip1 autophosphorylation is not required for Rip1 ubiquitination. TNF-alpha-induced Ikk and p38 MAP kinase activation is normal, and the Rip1D138N cells are resistant to TNF-alpha-induced cell death, indicating that the kinase activity of Rip1 is not required to mediate its antiapoptotic functions. In the absence of Traf2, TNF-alpha-induced ubiquitination of Rip1 is impaired, suggesting that Traf2 may be the E3 ubiquitin ligase responsible for the TNF-alpha-dependent, ubiquitination of Rip1. Finally, recruitment of the ubiquitinated Tak1 complex is dependent on the presence of Rip1, suggesting that Rip1 ubiquitination rather than its phosphorylation is critical in signaling

    TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB

    Get PDF
    AbstractActivation of the basic-helix-loop-helix (bHLH) gene TAL1 (or SCL) is a frequent gain-of-function mutation in T cell acute lymphoblastic leukemia (T-ALL). To provide genetic evidence that tal1/scl induces leukemia by interfering with E47 and HEB, we expressed tal1/scl in an E2A or HEB heterozygous background. These mice exhibit disease acceleration and perturbed thymocyte development due to repression of E47/HEB target genes. In tal1/scl thymocytes, we find the corepressor mSin3A bound to the CD4 enhancer, whereas an E47/HEB/p300 complex is detected in wild-type thymocytes. Furthermore, tal1/scl tumors are sensitive to pharmacologic inhibition of HDAC and undergo apoptosis. These data demonstrate that tal1/scl induces leukemia by repressing E47/HEB and suggest that HDAC inhibitors may prove efficacious in T-ALL patients who express TAL1/SCL
    corecore