471 research outputs found
New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition.
Isoprenoids form an extensive group of natural products involved in a number of important biological processes. Their biosynthesis proceeds through sequential 1'-4 condensations of isopentenyl diphosphate (C(5)) with an allylic acceptor, the first of which is dimethylallyl diphosphate (C(5)). The reactions leading to the production of geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)) and geranylgeranyl diphosphate (C(20)), which are the precursors of mono-, sesqui- and diterpenes, respectively, are catalyzed by a group of highly conserved enzymes known as short-chain isoprenyl diphosphate synthases, or prenyltransferases. In recent years, the sequences of many new prenyltransferases have become available, including those of several plant and animal geranyl diphosphate synthases, revealing novel mechanisms of product chain-length selectivity and an intricate evolutionary path from a putative common ancestor. Finally, there is considerable interest in designing inhibitors specific to short-chain prenyltransferases, for the purpose of developing new drugs or pesticides that target the isoprenoid biosynthetic pathway
Biodiversity mediates top-down control in eelgrass ecosystems: a global comparative-experimental approach
Nutrient pollution and reduced grazing each can stimulate algal blooms as shown by numerous experiments. But because experiments rarely incorporate natural variation in environmental factors and biodiversity, conditions determining the relative strength of bottom-up and top-down forcing remain unresolved. We factorially added nutrients and reduced grazing at 15 sites across the range of the marine foundation species eelgrass (Zostera marina) to quantify how top-down and bottom-up control interact with natural gradients in biodiversity and environmental forcing. Experiments confirmed modest top-down control of algae, whereas fertilisation had no general effect. Unexpectedly, grazer and algal biomass were better predicted by cross-site variation in grazer and eelgrass diversity than by global environmental gradients. Moreover, these large-scale patterns corresponded strikingly with prior small-scale experiments. Our results link global and local evidence that biodiversity and top-down control strongly influence functioning of threatened seagrass ecosystems, and suggest that biodiversity is comparably important to global change stressors
Direct-Breastfeeding in the Neonatal Intensive Care Unit and Breastfeeding Duration for Premature Infants
Aim To explore the relationship between direct-breastfeeding in the neonatal intensive care unit (NICU) and breastfeeding duration after discharge. Background Initiating and maintaining breastmilk feeding is an important goal that begins in the NICU. Little is known about direct-breastfeeding in the NICU and its relation to breastfeeding duration. Methods Chart review of 46 infants (\u3c 32 weeks gestational age or \u3c 1500 grams) whose mothers provided breastmilk. Results One month after discharge, mothers still providing breastmilk were more likely to have provided ≥ 1 direct-breastfeed per day in the NICU (21.16, CI: 3.13–143.25, p \u3c 0.01) and had prior breastfeeding experience (OR: 9.16, CI: 1.02–82.34, p \u3c 0.05). At 4 months, mothers still providing breastmilk were more likely to have provided ≥ 1 direct-breastfeed per day in the NICU (OR: 12.80, CI: 1.39–118.32, p \u3c 0.05). Conclusions Direct-breastfeeding in the NICU may play an essential role in preparing mothers for breastfeeding after discharge, thus potentially impacting breastfeeding duration
Recommended from our members
Cross-cultural adaptation of instruments assessing breastfeeding determinants: a multi-step approach
Background: Cross-cultural adaptation is a necessary process to effectively use existing instruments in other cultural and language settings. The process of cross-culturally adapting, including translation, of existing instruments is considered a critical set to establishing a meaningful instrument for use in another setting. Using a multi-step approach is considered best practice in achieving cultural and semantic equivalence of the adapted version. We aimed to ensure the content validity of our instruments in the cultural context of KwaZulu-Natal, South Africa. Methods: The Iowa Infant Feeding Attitudes Scale, Breastfeeding Self-Efficacy Scale-Short Form and additional items comprise our consolidated instrument, which was cross-culturally adapted utilizing a multi-step approach during August 2012. Cross-cultural adaptation was achieved through steps to maintain content validity and attain semantic equivalence in the target version. Specifically, Lynn’s recommendation to apply an item-level content validity index score was followed. The revised instrument was translated and back-translated. To ensure semantic equivalence, Brislin’s back-translation approach was utilized followed by the committee review to address any discrepancies that emerged from translation. Results: Our consolidated instrument was adapted to be culturally relevant and translated to yield more reliable and valid results for use in our larger research study to measure infant feeding determinants effectively in our target cultural context. Conclusions: Undertaking rigorous steps to effectively ensure cross-cultural adaptation increases our confidence that the conclusions we make based on our self-report instrument(s) will be stronger. In this way, our aim to achieve strong cross-cultural adaptation of our consolidated instruments was achieved while also providing a clear framework for other researchers choosing to utilize existing instruments for work in other cultural, geographic and population settings
Augmented Lagrangian Method for Constrained Nuclear Density Functional Theory
The augmented Lagrangiam method (ALM), widely used in quantum chemistry
constrained optimization problems, is applied in the context of the nuclear
Density Functional Theory (DFT) in the self-consistent constrained Skyrme
Hartree-Fock-Bogoliubov (CHFB) variant. The ALM allows precise calculations of
multidimensional energy surfaces in the space of collective coordinates that
are needed to, e.g., determine fission pathways and saddle points; it improves
accuracy of computed derivatives with respect to collective variables that are
used to determine collective inertia; and is well adapted to supercomputer
applications.Comment: 6 pages, 3 figures; to appear in Eur. Phys. J.
On the equivalence of pairing correlations and intrinsic vortical currents in rotating nuclei
The present paper establishes a link between pairing correlations in rotating
nuclei and collective vortical modes in the intrinsic frame. We show that the
latter can be embodied by a simple S-type coupling a la Chandrasekhar between
rotational and intrinsic vortical collective modes. This results from a
comparison between the solutions of microscopic calculations within the HFB and
the HF Routhian formalisms. The HF Routhian solutions are constrained to have
the same Kelvin circulation expectation value as the HFB ones. It is shown in
several mass regions, pairing regimes, and for various spin values that this
procedure yields moments of inertia, angular velocities, and current
distributions which are very similar within both formalisms. We finally present
perspectives for further studies.Comment: 8 pages, 4 figures, submitted to Phys. Rev.
Systematics of collective correlation energies from self-consistent mean-field calculations
The collective ground-state correlations stemming from low-lying quadrupole
excitations are computed microscopically. To that end, the self-consistent
mean-field model is employed on the basis of the Skyrme-Hartre-Fock (SHF)
functional augmented by BCS pairing. The microscopic-macroscopic mapping is
achieved by quadrupole-constrained mean-field calculations which are processed
further in the generator-coordinate method (GCM) at the level of the Gaussian
overlap approximation (GOA).
We study the correlation effects on energy, charge radii, and surface
thickness for a great variety of semi-magic nuclei. A key issue is to work out
the influence of variations of the SHF functional. We find that collective
ground-state correlations (GSC) are robust under change of nuclear bulk
properties (e.g., effective mass, symmetry energy) or of spin-orbit coupling.
Some dependence on the pairing strength is observed. This, however, does not
change the general conclusion that collective GSC obey a general pattern and
that their magnitudes are rather independent of the actual SHF parameters.Comment: 13 pages, 13 figure
Medium effects in high energy heavy-ion collisions
The change of hadron properties in dense matter based on various theoretical
approaches are reviewed. Incorporating these medium effects in the relativistic
transport model, which treats consistently the change of hadron masses and
energies in dense matter via the scalar and vector fields, heavy-ion collisions
at energies available from SIS/GSI, AGS/BNL, and SPS/CERN are studied. This
model is seen to provide satisfactory explanations for the observed enhancement
of kaon, antikaon, and antiproton yields as well as soft pions in the
transverse direction from the SIS experiments. In the AGS heavy-ion
experiments, it can account for the enhanced ratio, the difference
in the slope parameters of the and transverse kinetic energy
spectra, and the lower apparent temperature of antiprotons than that of
protons. This model also provides possible explanations for the observed
enhancement of low-mass dileptons, phi mesons, and antilambdas in heavy-ion
collisions at SPS energies. Furthermore, the change of hadron properties in hot
dense matter leads to new signatures of the quark-gluon plasma to hadronic
matter transition in future ultrarelativistic heavy-ion collisions at RHIC/BNL.Comment: RevTeX, 65 pages, including 25 postscript figures, invited topical
review for Journal of Physics G: Nuclear and Particle Physic
Towards a pan-Arctic inventory of the species diversity of the macro- and megabenthic fauna of the Arctic shelf seas
Although knowledge of Arctic seas has increased tremendously in the past decade, benthic diversity was investigated at regional scales only, and no attempt had been made to examine it across the entire Arctic. We present a first pan-Arctic account of the species diversity of the macro- and megabenthic fauna of the Arctic marginal shelf seas. It is based on an analysis of 25 published and unpublished species-level data sets, together encompassing 14 of the 19 marine Arctic shelf ecoregions and comprising a total of 2636 species, including 847 Arthropoda, 668 Annelida, 392 Mollusca, 228 Echinodermata, and 501 species of other phyla.
For the four major phyla, we also analyze the differences in faunal composition and diversity among the ecoregions. Furthermore, we compute gross estimates of the expected species numbers of these phyla on a regional scale. Extrapolated to the entire fauna and study area, we arrive at the conservative estimate that 3900 to 4700 macro- and megabenthic species can be expected to occur on the Arctic shelves. These numbers are smaller than analogous estimates for the Antarctic shelf but the difference is on the order of about two and thus less
pronounced than previously assumed. On a global scale, the Arctic shelves are characterized by intermediate macro- and megabenthic species numbers. Our preliminary pan-Arctic inventory provides an urgently needed assessment of current diversity patterns that can be
used by future investigations for evaluating the effects of climate change and anthropogenic activities in the Arctic
- …