3,326 research outputs found
Evaluation of a high temperature adhesive for fabricating graphite/PMR-15 polyimide structures
Tests are conducted to measure shear strength, shear modulus and flatwise tensile strength of the A7F (amide-imide modified LARC-13) adhesive system. An investigation is also conducted to determine the effect of geometric material parameters, and elevated temperature on the static strength of standard joints. Single-lap and double-lap composite joints, and single, double and step lap composite to metal joints are characterized. A series of advanced joints consisting of preformed adherends, adherends with scalloped edges and joints with hybrid interface plies are tested and compared to baseline single and double-lap designs
Design, Fabrication and Test of Graphite/Polyimide Composite Joints and Attachments for Advanced Aerospace Vehicles
Standard and advanced bonded joint concepts were evaluated to develop a data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550F)). Design concepts for specific joint applications and the fundamental parameters controlling the static strength characteristics of such joints were identified. Test results are presented for rail shear and sandwich beam compression tests and tension tests of moisture conditioned specimens and bonded on "T" sections. Coefficients of thermal expansion data are presented for A7F (LARC 13 Amide-imide modified) adhesion. Static discriminator test results for type 1 and type 2 bonded and bolted preliminary attachment concepts are presented and discussed
Design, fabrication and test of graphite/polyimide composite joints and attachments
The design, analysis, and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561 K (550 F) are summarized. Material properties and small specimen tests were conducted to establish design data and to evaluate specific design details. Static discriminator tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours at 589 K (600 F)) and thermal cycled (116 K to 589 K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589 K (600 F) for 125 hours
Quantum integrability of quadratic Killing tensors
Quantum integrability of classical integrable systems given by quadratic
Killing tensors on curved configuration spaces is investigated. It is proven
that, using a "minimal" quantization scheme, quantum integrability is insured
for a large class of classic examples.Comment: LaTeX 2e, no figure, 35 p., references added, minor modifications. To
appear in the J. Math. Phy
Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Summary
Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116K (-250 F), 294K (70 F) and 561K (550 F). Joint parameters evaluated were lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Tests of advanced joint concepts were also conducted to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. Special tests were conducted to establish material properties of the high temperature adhesive, designated A7F, used for bonding. Most of the bonded joint tests resulted in interlaminar shear or peel failures of the composite. There were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented
Adiabatically coupled systems and fractional monodromy
We present a 1-parameter family of systems with fractional monodromy and
adiabatic separation of motion. We relate the presence of monodromy to a
redistribution of states both in the quantum and semi-quantum spectrum. We show
how the fractional monodromy arises from the non diagonal action of the
dynamical symmetry of the system and manifests itself as a generic property of
an important subclass of adiabatically coupled systems
The Non-Trapping Degree of Scattering
We consider classical potential scattering. If no orbit is trapped at energy
E, the Hamiltonian dynamics defines an integer-valued topological degree. This
can be calculated explicitly and be used for symbolic dynamics of
multi-obstacle scattering.
If the potential is bounded, then in the non-trapping case the boundary of
Hill's Region is empty or homeomorphic to a sphere.
We consider classical potential scattering. If at energy E no orbit is
trapped, the Hamiltonian dynamics defines an integer-valued topological degree
deg(E) < 2. This is calculated explicitly for all potentials, and exactly the
integers < 2 are shown to occur for suitable potentials.
The non-trapping condition is restrictive in the sense that for a bounded
potential it is shown to imply that the boundary of Hill's Region in
configuration space is either empty or homeomorphic to a sphere.
However, in many situations one can decompose a potential into a sum of
non-trapping potentials with non-trivial degree and embed symbolic dynamics of
multi-obstacle scattering. This comprises a large number of earlier results,
obtained by different authors on multi-obstacle scattering.Comment: 25 pages, 1 figure Revised and enlarged version, containing more
detailed proofs and remark
Spatio-temporal ecology of sympatric felids on Borneo. Evidence for resource partitioning?
Niche differentiation, the partitioning of resources along one or more axes of a species’ niche hyper-volume, is widely recognised as an important mechanism for sympatric species to reduce interspecific competition and predation risk, and thus facilitate co-existence. Resource partitioning may be facilitated by behavioural differentiation along three main niche dimensions: habitat, food and time. In this study, we investigate the extent to which these mechanisms can explain the coexistence of an assemblage of five sympatric felids in Borneo. Using multi-scale logistic regression, we show that Bornean felids exhibit differences in both their broad and fine-scale habitat use. We calculate temporal activity patterns and overlap between these species, and present evidence for temporal separation within this felid guild. Lastly, we conducted an all-subsets logistic regression to predict the occurrence of each felid species as a function of the co-occurrence of a large number of other species and showed that Bornean felids co-occurred with a range of other species, some of which could be candidate prey. Our study reveals apparent resource partitioning within the Bornean felid assemblage, operating along all three niche dimension axes. These results provide new insights into the ecology of these species and the broader community in which they live and also provide important information for conservation planning for this guild of predators
Oak forest carbon and water simulations:Model intercomparisons and evaluations against independent data
Models represent our primary method for integration of small-scale, process-level phenomena into a comprehensive description of forest-stand or ecosystem function. They also represent a key method for testing hypotheses about the response of forest ecosystems to multiple changing environmental conditions. This paper describes the evaluation of 13 stand-level models varying in their spatial, mechanistic, and temporal complexity for their ability to capture intra- and interannual components of the water and carbon cycle for an upland, oak-dominated forest of eastern Tennessee. Comparisons between model simulations and observations were conducted for hourly, daily, and annual time steps. Data for the comparisons were obtained from a wide range of methods including: eddy covariance, sapflow, chamber-based soil respiration, biometric estimates of stand-level net primary production and growth, and soil water content by time or frequency domain reflectometry. Response surfaces of carbon and water flux as a function of environmental drivers, and a variety of goodness-of-fit statistics (bias, absolute bias, and model efficiency) were used to judge model performance.
A single model did not consistently perform the best at all time steps or for all variables considered. Intermodel comparisons showed good agreement for water cycle fluxes, but considerable disagreement among models for predicted carbon fluxes. The mean of all model outputs, however, was nearly always the best fit to the observations. Not surprisingly, models missing key forest components or processes, such as roots or modeled soil water content, were unable to provide accurate predictions of ecosystem responses to short-term drought phenomenon. Nevertheless, an inability to correctly capture short-term physiological processes under drought was not necessarily an indicator of poor annual water and carbon budget simulations. This is possible because droughts in the subject ecosystem were of short duration and therefore had a small cumulative impact. Models using hourly time steps and detailed mechanistic processes, and having a realistic spatial representation of the forest ecosystem provided the best predictions of observed data. Predictive ability of all models deteriorated under drought conditions, suggesting that further work is needed to evaluate and improve ecosystem model performance under unusual conditions, such as drought, that are a common focus of environmental change discussions
Vanishing Twist near Focus-Focus Points
We show that near a focus-focus point in a Liouville integrable Hamiltonian
system with two degrees of freedom lines of locally constant rotation number in
the image of the energy-momentum map are spirals determined by the eigenvalue
of the equilibrium. From this representation of the rotation number we derive
that the twist condition for the isoenergetic KAM condition vanishes on a curve
in the image of the energy-momentum map that is transversal to the line of
constant energy. In contrast to this we also show that the frequency map is
non-degenerate for every point in a neighborhood of a focus-focus point.Comment: 13 page
- …