2,450 research outputs found

    The Collapse of the Wien Tail in the Coldest Brown Dwarf? Hubble Space Telescope Near-Infrared Photometry of WISE J085510.83-071442.5

    Get PDF
    We present Hubble Space Telescope (HST) near-infrared photometry of the coldest known brown dwarf, WISE J085510.83−-071442.5 (WISE 0855−-0714). WISE 0855−-0714 was observed with the Wide Field Camera 3 (WFC3) aboard HST using the F105W, F125W, and F160W filters, which approximate the YY, JJ, and HH near-infrared bands. WISE 0855−-0714 is undetected at F105W with a corresponding 2σ\sigma magnitude limit of ∼\sim26.9. We marginally detect WISE 0855−-0714 in the F125W images (S/N ∼\sim4), with a measured magnitude of 26.41 ±\pm 0.27, more than a magnitude fainter than the J−J-band magnitude reported by Faherty and coworkers. WISE J0855−-0714 is clearly detected in the F160W band, with a magnitude of 23.90 ±\pm 0.02, the first secure detection of WISE 0855−-0714 in the near-infrared. Based on these data, we find that WISE 0855−-0714 has extremely red F105W−-F125W and F125W−-F160W colors relative to other known Y dwarfs. We find that when compared to the models of Saumon et al. and Morley et al., the F105W−-F125W and F125W−-F160W colors of WISE 0855−-0714 cannot be accounted for simultaneously. These colors likely indicate that we are seeing the collapse of flux on the Wien tail for this extremely cold object.Comment: Accepted for publication in ApJ Letter

    FeH Absorption in the Near-Infrared Spectra of Late M and L Dwarfs

    Get PDF
    We present medium-resolution z-, J-, and H-band spectra of four late-type dwarfs with spectral types ranging from M8 to L7.5. In an attempt to determine the origin of numerous weak absorption features throughout their near-infrared spectra, and motivated by the recent tentative identification of the E 4\Pi- A ^4\Pi system of FeH near 1.6 microns in umbral and cool star spectra, we have compared the dwarf spectra to a laboratory FeH emission spectrum. We have identified nearly 100 FeH absorption features in the z-, J-, and H-band spectra of the dwarfs. In particular, we have identified 34 features which dominate the appearance of the H-band spectra of the dwarfs and which appear in the laboratory FeH spectrum. Finally, all of the features are either weaker or absent in the spectrum of the L7.5 dwarf which is consistent with the weakening of the known FeH bandheads in the spectra of the latest L dwarfs.Comment: accepted by Ap

    Three New Cool Brown Dwarfs Discovered with the Wide-field Infrared Survey Explorer (WISE) and an Improved Spectrum of the Y0 Dwarf WISE J041022.71+150248.4

    Get PDF
    As part of a larger search of Wide-field Infrared Survey Explorer (WISE) data for cool brown dwarfs with effective temperatures less than 1000 K, we present the discovery of three new cool brown dwarfs with spectral types later than T7. Using low-resolution, near-infrared spectra obtained with the NASA Infrared Telescope Facility and the Hubble Space Telescope we derive spectral types of T9.5 for WISE J094305.98+360723.5, T8 for WISE J200050.19+362950.1, and Y0: for WISE J220905.73+271143.9. The identification of WISE J220905.73+271143.9 as a Y dwarf brings the total number of spectroscopically confirmed Y dwarfs to seventeen. In addition, we present an improved spectrum (i.e. higher signal-to-noise ratio) of the Y0 dwarf WISE J041022.71+150248.4 that confirms the Cushing et al. classification of Y0. Spectrophotometric distance estimates place all three new brown dwarfs at distances less than 12 pc, with WISE J200050.19+362950.1 lying at a distance of only 3.9-8.0 pc. Finally, we note that brown dwarfs like WISE J200050.19+362950.1 that lie in or near the Galactic plane offer an exciting opportunity to measure their mass via astrometric microlensing.Comment: Accepted for publication in the Astronomical Journa

    WISE J163940.83-684738.6: A Y Dwarf identified by Methane Imaging

    Get PDF
    We have used methane imaging techniques to identify the near-infrared counterpart of the bright WISE source WISEJ163940.83-684738.6. The large proper motion of this source (around 3.0arcsec/yr) has moved it, since its original WISE identification, very close to a much brighter background star -- it currently lies within 1.5" of the J=14.90+-0.04 star 2MASS16394085-6847446. Observations in good seeing conditions using methane sensitive filters in the near-infrared J-band with the FourStar instrument on the Magellan 6.5m Baade telescope, however, have enabled us to detect a near-infrared counterpart. We have defined a photometric system for use with the FourStar J2 and J3 filters, and this photometry indicates strong methane absorption, which unequivocally identifies it as the source of the WISE flux. Using these imaging observations we were then able to steer this object down the slit of the FIRE spectrograph on a night of 0.6" seeing, and so obtain near-infrared spectroscopy confirming a Y0-Y0.5 spectral type. This is in line with the object's near-infrared-to-WISE J3--W2 colour. Preliminary astrometry using both WISE and FourStar data indicates a distance of 5.0+-0.5pc and a substantial tangential velocity of 73+-8km/s. WISEJ163940.83-684738.6 is the brightest confirmed Y dwarf in the WISE W2 passband and its distance measurement places it amongst the lowest luminosity sources detected to date.Comment: Accepted for publication in The Astrophysical Journal, 20 September 201

    Auditable secure network overlays for multi-domain distributed applications

    Get PDF
    The push for data sharing and data processing across organisational boundaries creates challenges at many levels of the software stack. Data sharing and processing rely on the participating parties agreeing on the permissible operations and expressing them into actionable contracts and policies. Converting these contracts and policies into a operational infrastructure is still a matter of research and therefore begs the question how should a digital data market place infrastructure look like? In this paper we investigate how communication fabric and applications can be tightly coupled into a multi-domain overlay network which enforces accountability. We prove our concepts with a prototype which shows how a simple workflow can run across organisational boundaries

    A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres

    Full text link
    We highlight the importance of gaseous TiO and VO opacity on the highly irradiated close-in giant planets. The atmospheres of these planets naturally fall into two classes that are somewhat analogous to the M- and L-type dwarfs. Those that are warm enough to have appreciable opacity due to TiO and VO gases we term the ``pM Class'' planets, and those that are cooler we term ``pL Class'' planets. We calculate model atmospheres for these planets, including pressure-temperature profiles, spectra, and characteristic radiative time constants. We show that pM Class planets have hot stratospheres ∼\sim2000 K and appear ``anomalously'' bright in the mid infrared secondary eclipse, as was recently found for planets HD 149026b and HD 209458b. This class of planets absorbs incident flux and emits thermal flux from high in their atmospheres. Consequently, they will have large day/night temperature contrasts and negligible phase shifts between orbital phase and thermal emission light curves, because radiative timescales are much shorter than possible dynamical timescales. The pL Class planets absorb incident flux deeper in the atmosphere where atmospheric dynamics will more readily redistribute absorbed energy. This will lead to cooler day sides, warmer night sides, and larger phase shifts in thermal emission light curves. Around a Sun-like primary this boundary occurs at ∼\sim0.04-0.05 AU. The eccentric transiting planets HD 147506b and HD 17156b alternate between the classes. Thermal emission in the optical from pM Class planets is significant red-ward of 400 nm, making these planets attractive targets for optical detection. The difference in the observed day/night contrast between ups Andromeda b (pM Class) and HD 189733b (pL Class) is naturally explained in this scenario. (Abridged.)Comment: Accepted to the Astrophysical Journa

    2MASS J06164006-6407194: The First Outer Halo L Subdwarf

    Full text link
    We present the serendipitous discovery of an L subdwarf, 2MASS J06164006-6407194, in a search of the Two Micron All Sky Survey for T dwarfs. Its spectrum exhibits features indicative of both a cool and metal poor atmosphere including a heavily pressured-broadened K I resonant doublet, Cs I and Rb I lines, molecular bands of CaH, TiO, CrH, FeH, and H2O, and enhanced collision induced absorption of H2. We assign 2MASS 0616-6407 a spectral type of sdL5 based on a comparison of its red optical spectrum to that of near solar-metallicity L dwarfs. Its high proper motion (mu =1.405+-0.008 arcsec yr-1), large radial velocity (Vrad = 454+-15 km s-1), estimated uvw velocities (94, -573, 125) km s-1 and Galactic orbit with an apogalacticon at ~29 kpc are indicative of membership in the outer halo making 2MASS 0616-6407 the first ultracool member of this population.Comment: Accepted for publication in Ap
    • …
    corecore