
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Auditable secure network overlays for multi-domain distributed applications

Cushing, R.; Koning, R.; Zhang, L.; de Laat, C.; Grosso, P.

Publication date
2020
Document Version
Final published version
Published in
IFIP Networking 2020 Conference and Workshops
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Cushing, R., Koning, R., Zhang, L., de Laat, C., & Grosso, P. (2020). Auditable secure
network overlays for multi-domain distributed applications. In IFIP Networking 2020
Conference and Workshops: June 22-25, 2020, Paris, France (pp. 658-660). IEEE.
https://ieeexplore.ieee.org/document/9142725

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Feb 2023

https://dare.uva.nl/personal/pure/en/publications/auditable-secure-network-overlays-for-multidomain-distributed-applications(462357a1-cb51-45f2-b9be-23ce4d54589b).html
https://ieeexplore.ieee.org/document/9142725

Auditable secure network overlays
for multi-domain distributed applications

Reginald Cushing
University of Amsterdam

Amsterdam, The Netherlands
r.s.cushing@uva.nl

Ralph Koning
University of Amsterdam

Amsterdam, The Netherlands
r.koning@uva.nl

Lu Zhang
University of Amsterdam

Amsterdam, The Netherlands
l.zhang2@uva.nl

Cees de Laat
University of Amsterdam

Amsterdam, The Netherlands
delaat@uva.nl

Paola Grosso
University of Amsterdam

Amsterdam, The Netherlands
p.grosso@uva.nl

Abstract—The push for data sharing and data processing
across organisational boundaries creates challenges at many
levels of the software stack. Data sharing and processing rely on
the participating parties agreeing on the permissible operations
and expressing them into actionable contracts and policies.
Converting these contracts and policies into a operational in-
frastructure is still a matter of research and therefore begs the
question how should a digital data market place infrastructure
look like? In this paper we investigate how communication fabric
and applications can be tightly coupled into a multi-domain
overlay network which enforces accountability. We prove our
concepts with a prototype which shows how a simple workflow
can run across organisational boundaries.

Index Terms—overlay network, marketplace, cryptography,
actors, auditing.

I. INTRODUCTION

Data sharing across organisational boundaries has the po-
tential to open up new insights, as well as to create novel
business opportunities. Digital Data Marketplace (DDMs) [1]
[2] are emerging as architectures to support this mode of inter-
actions. They rely on the participating parties agreeing on the
permissible operations (market transactions) and expressing
them into actionable contracts and policies. Converting these
contracts and policies into a operational infrastructure is still a
matter of research and therefore begs the question how should
a digital data market place infrastructure look like?

For better accounting and enforcement of policies, the
application and network can not be observed in isolation of
each other. Network accountability has often been limited
to nodes on the network [3]. Our approach is to tie the
application and network into an overlay where activity on the
network can be observed as functions of the applications. This
enhanced observation allows to create an additional plane to
the traditional data and control plane. We call this plane the
audit plane which can observe the application and network
activities and verify the actions. We show this in a working
prototype.

II. DEFINING THE ACTORS

The complexity of such a system can be better understood
by describing a DDM as a group of actors with specific roles.
An actor is a uniquely identifiable entity in the system that has
certain functions, is reactive as well as proactive i.e. function
calls can be a result of a reaction to a message from another
actor or a result of an internal routine. To further categorise
actors into roles, we can segregate them into layers. The lower
layers deal with connectivity while higher layers deal with
policies. In our scenario an actor or actors are part of one
of the layers and communicate with other actors in different
layers (Figure 1) or domains to facilitate and coordinate market
applications.

Infrastructure actors: e.g. storage, compute,
vpns

Information actors: e.g. data nodes, function
registries, node address index

Permission actors: e.g. auditor,authorization,
verification.

Application actors: e.g. workflows
implementing data movement pattern

Policy actors: e.g. enforceable application
rules, monitoring rules.

Consortium actors: members, identification
method.

0

1

2

3

4

5

Fig. 1. Roles of actors in a DDM can be categorised into layers. The lower
the level the closer to infrastructure the actor roles are. E.g. Layer 0 deal with
having the capabilities to setup virtual resources such as storage, compute and
setting up VPN network connections.

III. TRANSACTION-BASED SECURE NETWORK OVERLAY

An operational infrastructure is composed mainly of actors
from layers 3,2,1. The main purpose of a network overlay is to
bring together these actors. In network terminology actors are
synonymous to nodes on the network thus a network node can
be considered the implementation of an actor. For the rest of
this paper actor and node are used interchangeably. Addressing
on the network is done using public/private keys where the

658

This research is partly funded by the DL4LD project. https://dl4ld.nl
Annex to ISBN 978-3-903176-28-7© 2020 IFIP

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on March 03,2021 at 16:54:25 UTC from IEEE Xplore. Restrictions apply.

public key is the address of the node and the private key is
only known to the node. The advantages of this cryptographic
addressing mechanism are twofold: First, nodes are not tied to
IP addresses and thus can be dynamically allocated to different
physical locations. Second, communications from nodes are
signed by their private keys which can be verified by any node
in the network since the address (public key) is used to verify
the signatures. The latter is important since a core function
of the network is creating an audit trail of activity on the
network and audits need to verify to whom communications
belong. Unlike other addressing schemes such as IP, these
cryptographic addresses are non-transferable i.e. the same
address can not be reused for different nodes at any point in
time which strengthens traceability since any actions signed
by a node can always be traced back to that node. Name
services are responsible to translate public key address to
actual IP endpoints to allow communication to proceed over
lower protocols. Another side effect feature of such addressing
is that nodes can sign each others keys creating a web of trust
between nodes that can easily be verified by following the
signatures.

Nodes on the network expose functions which can be called
by other nodes. The function routes takes the form:

publickey/modulename/functionname

Registries assist in the discovery of the functions exposed
on the network. Since such registries can pose an attack vector
in a multi-domain architecture, part of the agreed consortium
rules dictate how many registries per domain are hosted on
the network and what consensus method is used to agree on a
registry query e.g. all registries must return the same result to
a query for that query to be deemed valid or a majority have
to agree on a result.

Data actors are responsible for exposing the shareable data
collections. The cryptographic addressing scheme allows for
cryptographic keys assigned to particular datasets. The owner
of the dataset is the node that possesses the private key for the
collection. The dataset addresses are the bases of application
transactions whereby the application’s data movement is listed
as a transaction between nodes on the overlay. Data object can
thus be given unique addresses in the form

publickey : datahash

In this case the address points to the unique data collection
and the data hash identifies a data object within the collection
e.g. a file. Since the address is the public key, any recipient of
the data can check data signatures done by the data collection
owner’s private key.

Communication between nodes is of two main types, signal
and data. Signalling is done through messaging (Figure 2) to
invoke functions on other nodes. Data communication is done
through dedicated connections per application transaction. For
example, to open a connection between two data nodes, the
application will perform the signalling to the responsible nodes
that manage the endpoints. Obviously, not all applications are
authorised to just open connections, for this reason signing

and verification nodes are responsible to issue signatures for
applications. These signatures are used by the control actors to
perform the required actions such as open connections, copy
data, etc.

Application vpn
connection

MSG BUS

Data collection
Actor

Nodes/Actors with
public key addressing
E.g. auditor actors,
data collection actors

Nodes/Actors with
public key addressing

domains

Fig. 2. Actors organised on an overlay network. A message bus

Applications on the network are a list of transactions which
represent the dataflows of an application. Figure 3 shows how
a typical workflow application can be realised into a set of
transactions which are applicable on the overlay network. The
workflow application is organised into a pattern to conform
to an agreed archetype (these patterns are agreed upon at the
policy layer). The application combined with the archetype
results in a list of transactions. A transaction would instruct
copying of data between nodes of different domains and in-
struct computations to be performed on the different domains.
Transactions are used as instructions to drive the network.
Since transactions are made of identifiable source, destination
and application, every transaction can be tracked, monitored
and audited. This level of granularity of auditing allows to
build an audit trail of applications on the network.

Network transactions

Input
data

Input
data

Compute Output
data

Compute

Input
data

Input
data

Move compute

Move data

Move output

type application source destination signitatures

transfer PublicKey
Application

PublicKeyA:
hash

PublicKeyB domains
[A,B,C]

transfer PublicKey
Application

PublicKeyC:
hash

PublicKeyB domains
[A,B,C]

compute
+
transfer

PublicKey
Application

PublicKeyB:
hash

PublicKeyA domains
[A,B,C]

A

B

C

Workflow

Archetype/Execution Pattern

Fig. 3. Realisation of a workflow application to a set of network transactions.

Auditing is a major concept in our overlay. Auditor ac-
tors are able to sign application transactions. Signatures are
produced according to their internal policies (from layer 5).
The overlay can have auditor nodes from different domains in
which case transactions get multiple signatures. The signed
transactions act as an verification and authorisation layer
which the lower control layer will use to effect transactions.
For example, an application include a transaction to move
data from A to B, auditors check if this action conforms with
pre-agreed policies in which case the transaction is signed.
The actors in the control layer will then provision a network
connection from A to B and move the data. In the case where

659Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on March 03,2021 at 16:54:25 UTC from IEEE Xplore. Restrictions apply.

auditors disagree on signatures, the consensus mechanism
decided by the consortium dictates the outcome e.g. majority
auditors sign or all auditors need to sign. To prevent audit
logs from being tempered with, independent auditor nodes are
responsible to maintain separate databases that can be cross-
referenced to detect tempering.

IV. PROTOTYPE

To prove our approach we implemented an overlay pro-
totype with the concepts introduced in section III that we
showcased for the first time during the 2019 SuperComput-
ing conference in Denver. Our current prototype shows a
secure execution environment that can be used in a multi-
domain DDM. In particular, we focus on orchestrating virtual
infrastructure such that it only allows the agreed application
transactions to occur and to provide detailed logging that is
used during the runtime stage of the auditing process.

All nodes expose their functions on a message queue. The
function path described in Section III is used as a message
routing key thus enabling the responsible node to react to
messages directed to it specifically. In our prototype we assign
names to certain node roles. Most importantly we introduce
the following node types:

• Bucket node are data nodes which are Docker containers
that contain either Data (data buckets) or Compute objects
(compute buckets). A bucket allows a dataset to be
directly addressable using the public key.

• Controller node manages the life cycle of buckets i.e.
creation, deletion and VPN connections between buckets.
Each domain has at least one controller.

• Planner node is the node responsible for the planning
and execution of the application transactions. This is a
Docker container with a also a unique address. Each
application has has a single Docker container as its
planner thus each application has a unique address.

• Auditor node is a node responsible for authorisation
through signatures of actions such as application transac-
tions. The auditor is Docker container which monitors the
communication of the overlay and signs requests. Each
domain has at least one Auditor.

By logging the state and the connectivity of the buckets
and other nodes, the auditor can analyse the different logs
for inconsistencies e.g. a transaction not being part of an
application or a transaction happening outside its allowed time
window. When inconsistencies occur, the auditor raises alerts,
lower the confidence in the secure execution of the application,
or abort the execution causing the application to fail. In this
case, its up to the partners to find the underlying problem or
disagreement and to resolve it.

To maintain a temper resistant audit log, the prototype
borrows some ideas from blockchain. Each auditor maintains
a linked list of logs using hashes. A set of logs is called a
block. Periodically, a new block entry is created by hashing
the previous set of logs and including the hash in the next list
entry. The list of hashes means that a modification to a log
entry will break the hashing. Still nothing stops a malicious

attempt to temper with the log to modify the whole database.
For this reason new block hashes are announced to the auditors
which they will include them into their own logs. With this
approach logs from different auditors can be cross-referenced
for tempering.

Figure 4 depict a running prototype with a hello world
workflow. The workflow consists of two data image inputs a
compute and an image output. The archetype of this workflow
dictates that a third party domain will do the computation
thus compute, and two data inputs are transferred to a third
domain for computation and the output is copied out. The
demo depicts the detection of data being tempered which is
detected by transaction signatures failing verification. Other
scenarios include low auditor approval on transaction signa-
tures, malicious planner trying pass on extra transactions and
rogue application on the network.

Fig. 4. Left circle: shows the overlay network with data buckets in different
colour coded domains. The lines between buckets depict dynamic VPN con-
nections being created per transaction. Top right: the workflow transaction list
and the planner address that is coordinating the execution of the transactions.
Centre right: the application progress. Bottom right: the 3 auditor logs (1 from
each domain) logging and auditing the activity on the network.

V. CONCLUSIONS AND FUTURE WORK

In this paper we showed how tying and application with
the network into an overlay enhances the information that is
observed. This was done by decomposing workflow applica-
tions into a list of network transactions that are mapped to
the physical network through the overlay. Accountability is
ameliorated through cryptographic addressing whereby actions
on the network are always signed. Multi-domain logging using
linked lists of hashes reduces the risk of domains tempering
with their logs which further increases transparency on the
network. Here we focused mainly on the data exchange part
of the system, the compute part opens other challenges such
as validation which we are looking at for future work.

REFERENCES

[1] S. Cisneros-Cabrera, A. Ramzan, P. Sampaio, and N. Mehandjiev, “Digital
marketplaces for industry 4.0: a survey and gap analysis,” in Working
Conference on Virtual Enterprises. Springer, 2017, pp. 18–27.

[2] A. Zerdick, K. Schrape, A. Artope, K. Goldhammer, U. T. Lange,
E. Vierkant, E. Lopez-Escobar, and R. Silverstone, E-conomics: Strategies
for the Digital Marketplace. Springer Science & Business Media, 2013.

[3] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: Practical
accountability for distributed systems,” in Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles, ser. SOSP
’07. New York, NY, USA: Association for Computing Machinery,
2007, p. 175–188. [Online]. Available: https://doi.org/10.1145/1294261.
1294279

660Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on March 03,2021 at 16:54:25 UTC from IEEE Xplore. Restrictions apply.

