2,503 research outputs found
Sixty original plays for primary grades
Thesis (Ed.M.)--Boston Universit
Source parameters of the 11 June 1909, Lambesc (Provence, southeastern France) earthquake: a reappraisal based on macroseismic, seismological and geodetic observations
Destructive earthquakes are rare in France yet pose a sizable seismic hazard, especially when critical infrastructures are concerned. Only a few destructive events have occurred within the instrumental period, the most important being the 11 June 1909, Lambesc (Provence) earthquake. With a magnitude estimated at 6.2 [Rothé, 1942], the event was recorded by 30 observatories and produced intensity IX effects in the epicentral area, ~30 km north of Marseille. We collected 30 seismograms, leveling data and earthquake intensities to assess the magnitude and possibly the focal mechanism of this event. Following this multidisciplinary approach, we propose a source model where all relevant parameters are constrained by at least two of the input datasets. Our reappraisal of the seismological data yielded Mw 5.8-6.1 (6.0 preferred) and Ms 6.0, consistent with the magnitude from intensity data (Me 5.8) and with constraints derived from modeling of coseismic elevation changes. Hence, we found the Lambesc earthquake to have been somewhat smaller than previously reported. Our datasets also constrain the geometry and kinematics of faulting, suggesting that the earthquake was generated by reverse-right lateral slip on a WNW-striking, steeply north-dipping fault beneath the western part of the Trévaresse fold. This result suggests that the fold, located in front of the Lubéron thrust, plays a significant role in the region’s recent tectonic evolution. The sense of slip obtained for the 1909 rupture also agrees with the regional stress field obtained from earthquake focal mechanisms and microtectonic data as well as recent GPS data
2MASS J06164006-6407194: The First Outer Halo L Subdwarf
We present the serendipitous discovery of an L subdwarf, 2MASS
J06164006-6407194, in a search of the Two Micron All Sky Survey for T dwarfs.
Its spectrum exhibits features indicative of both a cool and metal poor
atmosphere including a heavily pressured-broadened K I resonant doublet, Cs I
and Rb I lines, molecular bands of CaH, TiO, CrH, FeH, and H2O, and enhanced
collision induced absorption of H2. We assign 2MASS 0616-6407 a spectral type
of sdL5 based on a comparison of its red optical spectrum to that of near
solar-metallicity L dwarfs. Its high proper motion (mu =1.405+-0.008 arcsec
yr-1), large radial velocity (Vrad = 454+-15 km s-1), estimated uvw velocities
(94, -573, 125) km s-1 and Galactic orbit with an apogalacticon at ~29 kpc are
indicative of membership in the outer halo making 2MASS 0616-6407 the first
ultracool member of this population.Comment: Accepted for publication in Ap
Layer-Resolved Ultrafast XUV Measurement of Hole Transport in a Ni-TiO2-Si Photoanode
Metal-oxide-semiconductor junctions are central to most electronic and
optoelectronic devices. Here, the element-specificity of broadband extreme
ultraviolet (XUV) ultrafast pulses is used to measure the charge transport and
recombination kinetics in each layer of a Ni-TiO2-Si junction. After
photoexcitation of silicon, holes are inferred to transport from Si to Ni
ballistically in ~100 fs, resulting in spectral shifts in the Ni M2,3 XUV edge
that are characteristic of holes and the absence of holes initially in TiO2.
Meanwhile, the electrons are observed to remain on Si. After picoseconds, the
transient hole population on Ni is observed to back-diffuse through the TiO2,
shifting the Ti spectrum to higher oxidation state, followed by electron-hole
recombination at the Si-TiO2 interface and in the Si bulk. Electrical
properties, such as the hole diffusion constant in TiO2 and the initial hole
mobility in Si, are fit from these transient spectra and match well with values
reported previously
Quantum mechanics is about quantum information
I argue that quantum mechanics is fundamentally a theory about the
representation and manipulation of information, not a theory about the
mechanics of nonclassical waves or particles. The notion of quantum information
is to be understood as a new physical primitive -- just as, following
Einstein's special theory of relativity, a field is no longer regarded as the
physical manifestation of vibrations in a mechanical medium, but recognized as
a new physical primitive in its own right.Comment: 17 pages, forthcoming in Foundations of Physics Festschrift issue for
James Cushing. Revised version: some paragraphs have been added to the final
section clarifying the argument, and various minor clarifying remarks have
been added throughout the tex
Grounding Bohmian Mechanics in Weak Values and Bayesianism
Bohmian mechanics (BM) is a popular interpretation of quantum mechanics in
which particles have real positions. The velocity of a point x in configuration
space is defined as the standard probability current j(x) divided by the
probability density P(x). However, this ``standard'' j is in fact only one of
infinitely many that transform correctly and satisfy \dot P + \del . j=0. In
this article I show that there is a unique j that can be determined
experimentally as a weak value using techniques that would make sense to a
classical physicist. Moreover, this operationally defined j equals the standard
j, so, assuming \dot x = j/P, the possible Bohmian paths can also be determined
experimentally from a large enough ensemble. Furthermore, this approach to
deriving BM singles out x as the hidden variable, because (for example) the
operationally defined momentum current is in general incompatible with the
evolution of the momentum distribution. Finally I discuss how, in this setting,
the usual quantum probabilities can be derived from a Bayesian standpoint, via
the principle of indifference.Comment: 11 page
Spider fauna of semiarid eastern colorado agroecosystems: Diversity, abundance, and effects of crop intensification
Spiders are critical predators in agroecosystems. Crop management practices can influence predator density and diversity, which, in turn, can influence pest management strategies. Crop intensification is a sustainable agricultural technique that can enhance crop production although optimizing soil moisture. To date, there is no information on how crop intensification affects natural enemy populations, particularly spiders. This study had two objectives: to characterize the abundance and diversity of spiders in eastern Colorado agroecosystems, and to test the hypothesis that spider diversity and density would be higher in wheat (Triticum aestivum L.) in crop-intensified rotations compared with wheat in conventional rotations. We collected spiders through pitfall, vacuum, and lookdown sampling from 2002 to 2007 to test these objectives. Over 11,000 spiders in 19 families from 119 species were captured from all sampling techniques. Interestingly, the hunting spider guild represented 89% of the spider fauna captured from all sites with the families Gnaphosidae and Lycosidae representing 75% of these spiders. Compared with European agroecosystems, these agroecosystems had greater diversity, which can be beneficial for the biological control of pests. Overall, spider densities were low in these semiarid cropping systems, and crop intensification effects on spider densities were not evident at this scale. © 2013 Entomological Society of America
Estrogen Receptor-α in the Bed Nucleus of the Stria Terminalis Regulates Social Affiliation in Male Prairie Voles (Microtus ochrogaster)
Estrogen receptor alpha (ERα) typically masculinizes male behavior, while low levels of ERα in the medial amygdala (MeA) and the bed nucleus of the stria terminalis (BST) are associated with high levels of male prosocial behavior. In the males of the highly social prairie vole (Microtus ochrogaster), increasing ERα in the MeA inhibited the expression of spontaneous alloparental behavior and produced a preference for novel females. To test for the effects of increased ERα in the BST, a viral vector was used to enhance ERα expression in the BST of adult male prairie voles. Following treatment, adult males were tested for alloparental behavior with 1–3-day-old pups, and for heterosexual social preference and affiliation. Treatment did not affect alloparental behavior as 73% of ERα-BST males and 62.5% of control males were alloparental. Increasing ERα in the BST affected heterosexual affiliation, with ERα-BST males spending significantly less total time in side-by-side contact with females relative to time spent with control males. ERα-BST males did not show a preference for either the familiar or novel female. These findings differed significantly from those reported in ERα-MeA enhanced males, where ERα inhibited alloparental behavior and produced a preference for a novel female. The findings from this study suggest two things: first, that increased ERα in the BST decreases social affiliation and second, that altering ERα in different regions of the social neural circuit differentially impacts the expression of social behavior
Characterizing Young Brown Dwarfs using Low Resolution Near-IR Spectra
We present near-infrared (1.0-2.4 micron) spectra confirming the youth and
cool effective temperatures of 6 brown dwarfs and low mass stars with
circumstellar disks toward the Chamaeleon II and Ophiuchus star forming
regions. The spectrum of one of our objects indicates that it has a spectral
type of ~L1, making it one of the latest spectral type young brown dwarfs
identified to date. Comparing spectra of young brown dwarfs, field dwarfs, and
giant stars, we define a 1.49-1.56 micron H2O index capable of determining
spectral type to within 1 sub-type, independent of gravity. We have also
defined an index based on the 1.14 micron sodium feature that is sensitive to
gravity, but only weakly dependent on spectral type for field dwarfs. Our 1.14
micron Na index can be used to distinguish young cluster members (t <~ 5 Myr)
from young field dwarfs, both of which may have the triangular H-band continuum
shape which persists for at least tens of Myr. Using effective temperatures
determined from the spectral types of our objects along with luminosities
derived from near and mid-infrared photometry, we place our objects on the H-R
diagram and overlay evolutionary models to estimate the masses and ages of our
young sources. Three of our sources have inferred ages (t ~= 10-30 Myr)
significantly older than the median stellar age of their parent clouds (1-3
Myr). For these three objects, we derive masses ~3 times greater than expected
for 1-3 Myr old brown dwarfs with the bolometric luminosities of our sources.
The large discrepancies in the inferred masses and ages determined using two
separate, yet reasonable methods, emphasize the need for caution when deriving
or exploiting brown dwarf mass and age estimates.Comment: 11 pages, Accepted to Ap
- …