39 research outputs found

    Expanding the Y Dwarf Census with Spitzer Follow-up of the Coldest CatWISE Solar Neighborhood Discoveries

    Get PDF
    We present Spitzer 3.6 and 4.5 μm follow-up of 170 candidate extremely cool brown dwarfs newly discovered via the combination of Wide-field Infrared Survey Explorer (WISE) and NEOWISE imaging at 3–5 μm. CatWISE, a joint analysis of archival WISE and NEOWISE data, has improved upon the motion measurements of AllWISE by leveraging a >10× time baseline enhancement, from 0.5 yr (AllWISE) to 6.5 yr (CatWISE). As a result, CatWISE motion selection has yielded a large sample of previously unrecognized brown dwarf candidates, many of which have archival detections exclusively in the WISE 4.6 μm (W2) channel, suggesting that they could be both exceptionally cold and nearby. Where these objects go undetected in WISE W1 (3.4 μm), Spitzer can provide critically informative detections at 3.6 μm. Of our motion-confirmed discoveries, 17 have a best-fit Spitzer [3.6]–[4.5] color most consistent with spectral type Y. It is likely that CWISEP J144606.62–231717.8 (μ ≈ 1.”3 yr⁻¹) is the reddest, and therefore potentially coldest, member of our sample with a very uncertain [3.6]–[4.5] color of 3.71 ± 0.44 mag. We also highlight our highest proper-motion discovery, WISEA J153429.75–104303.3, with μ ≈ 2.”7 yr⁻¹. Given that the prior list of confirmed and presumed Y dwarfs consists of just 27 objects, the Spitzer follow-up presented in this work has substantially expanded the sample of identified Y dwarfs. Our new discoveries thus represent significant progress toward understanding the bottom of the substellar mass function, investigating the diversity of the Y dwarf population, and selecting optimal brown dwarf targets for James Webb Space Telescope spectroscopy

    The CatWISE Preliminary Catalog: Motions from WISE{\it WISE} and NEOWISE{\it NEOWISE} Data

    Full text link
    CatWISE is a program to catalog sources selected from combined WISE{\it WISE} and NEOWISE{\it NEOWISE} all-sky survey data at 3.4 and 4.6 μ\mum (W1 and W2). The CatWISE Preliminary Catalog consists of 900,849,014 sources measured in data collected from 2010 to 2016. This dataset represents four times as many exposures and spans over ten times as large a time baseline as that used for the AllWISE Catalog. CatWISE adapts AllWISE software to measure the sources in coadded images created from six-month subsets of these data, each representing one coverage of the inertial sky, or epoch. The catalog includes the measured motion of sources in 8 epochs over the 6.5 year span of the data. From comparison to Spitzer{\it Spitzer}, the SNR=5 limits in magnitudes in the Vega system are W1=17.67 and W2=16.47, compared to W1=16.96 and W2=16.02 for AllWISE. From comparison to Gaia{\it Gaia}, CatWISE positions have typical accuracies of 50 mas for stars at W1=10 mag and 275 mas for stars at W1=15.5 mag. Proper motions have typical accuracies of 10 mas yr1^{-1} and 30 mas yr1^{-1} for stars with these brightnesses, an order of magnitude better than from AllWISE. The catalog is available in the WISE/NEOWISE Enhanced and Contributed Products area of the NASA/IPAC Infrared Science Archive.Comment: 53 pages, 20 figures, 5 tables. Accepted by ApJ

    The CatWISE2020 Catalog

    Get PDF
    The CatWISE2020 Catalog consists of 1,890,715,640 sources over the entire sky selected from WISE and NEOWISE survey data at 3.4 and 4.6 μ\mum (W1 and W2) collected from 2010 Jan. 7 to 2018 Dec. 13. This dataset adds two years to that used for the CatWISE Preliminary Catalog (Eisenhardt et al., 2020), bringing the total to six times as many exposures spanning over sixteen times as large a time baseline as the AllWISE catalog. The other major change from the CatWISE Preliminary Catalog is that the detection list for the CatWISE2020 Catalog was generated using crowdsource{\it crowdsource} (Schlafly et al. 2019), while the CatWISE Preliminary Catalog used the detection software used for AllWISE. These two factors result in roughly twice as many sources in the CatWISE2020 Catalog. The scatter with respect to Spitzer{\it Spitzer} photometry at faint magnitudes in the COSMOS field, which is out of the Galactic plane and at low ecliptic latitude (corresponding to lower WISE coverage depth) is similar to that for the CatWISE Preliminary Catalog. The 90% completeness depth for the CatWISE2020 Catalog is at W1=17.7 mag and W2=17.5 mag, 1.7 mag deeper than in the CatWISE Preliminary Catalog. From comparison to Gaia{\it Gaia}, CatWISE2020 motions are accurate at the 20 mas yr1^{-1} level for W1\sim15 mag sources, and at the 100\sim100 mas yr1^{-1} level for W1\sim17 mag sources. This level of precision represents a 12×\times improvement over AllWISE. The CatWISE catalogs are available in the WISE/NEOWISE Enhanced and Contributed Products area of the NASA/IPAC Infrared Science Archive.Comment: 27 pages, 24 figure, 2 tables. Accepted for publication in ApJS. arXiv admin note: text overlap with arXiv:1908.0890

    Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2010

    Full text link
    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams

    High-Precision Radio and Infrared Astrometry of LSPM J1314+1320AB - II: Testing Pre--Main-Sequence Models at the Lithium Depletion Boundary with Dynamical Masses

    Get PDF
    Trent J. Dupuy, et al, 'HIGH-PRECISION RADIO AND INFRARED ASTROMETRY OF LSPM J1314+1320AB. II. TESTING PREMAIN-SEQUENCE MODELS AT THE LITHIUM DEPLETION BOUNDARY WITH DYNAMICAL MASSES', The Astrophysical Journal, Vol. 827 (1), 14pp, August 2016. doi:10.3847/0004-637X/827/1/23. © 2016. The American Astronomical Society. All rights reserved.We present novel tests of pre-main-sequence models based on individual dynamical masses for the M7 binary LSPM J1314+1320AB. Joint analysis of our Keck adaptive optics astrometric monitoring along with Very Long Baseline Array radio data from a companion paper yield component masses of 0.0885±0.00060.0885\pm0.0006 MM_{\odot} and 0.0875±0.00100.0875\pm0.0010 MM_{\odot} and a parallactic distance of 17.249±0.01317.249\pm0.013 pc. We also derive component luminosities that are consistent with the system being coeval at an age of 80.8±2.580.8\pm2.5 Myr, according to BHAC15 evolutionary models. The presence of lithium is consistent with model predictions, marking the first time the theoretical lithium depletion boundary has been tested with ultracool dwarfs of known mass. However, we find that the average evolutionary model-derived effective temperature (2950±52950\pm5 K) is 180 K hotter than we derive from a spectral type-TeffT_{\rm eff} relation based on BT-Settl models (2770±1002770\pm100 K). We suggest that the dominant source of this discrepancy is model radii being too small by \approx13%. In a test that mimics the typical application of evolutionary models by observers, we derive masses on the H-R diagram using the luminosity and BT-Settl temperature. The estimated masses are 4619+1646^{+16}_{-19}% (2.0σ\sigma) lower than we measure dynamically and would imply that this is a system of \approx50 MJupM_{\rm Jup} brown dwarfs, highlighting the large systematic errors possible when inferring masses from the H-R diagram. This is first time masses have been measured for ultracool (\geqM6) dwarfs displaying spectral signatures of low gravity. Based on features in the infrared, LSPM J1314+1320AB appears higher gravity than typical Pleiades and AB Dor members, opposite the expectation given its younger age. The components of LSPM J1314+1320AB are now the nearest, lowest mass pre-main-sequence stars with direct mass measurements.Peer reviewe

    CWISEP J193518.59–154620.3: An Extremely Cold Brown Dwarf in the Solar Neighborhood Discovered with CatWISE

    Get PDF
    We present the discovery of an extremely cold, nearby brown dwarf in the solar neighborhood, found in the CatWISE catalog. Photometric follow-up with Spitzer reveals that the object, CWISEP J193518.59–154620.3, has ch1–ch2 = 3.24 ± 0.31 mag, making it one of the reddest brown dwarfs known. Using the Spitzer photometry and the polynomial relations from Kirkpatrick et al. we estimate an effective temperature in the ~270–360 K range, and a distance estimate in the 5.6–10.9 pc range. We combined the WISE, NEOWISE, and Spitzer data to measure a proper motion of μ_α cos δ = 337±69 mas yr^(−1), μ_δ = −50 ± 97 mas yr^(−1), which implies a relatively low tangential velocity in the range 7–22 km s^(−1)
    corecore