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ABSTRACT

We present the discovery of an extremely cold, nearby brown dwarf in the solar neighborhood, found

in the CatWISE catalog (Eisenhardt et al., in prep.). Photometric follow-up with Spitzer reveals that

the object, CWISEP J193518.59–154620.3, has ch1–ch2 = 3.24±0.31 mag, making it one of the reddest

brown dwarfs known. Using the Spitzer photometry and the polynomial relations from Kirkpatrick

et al. (2019) we estimate an effective temperature in the ∼270–360 K range, and a distance estimate

in the 5.6–10.9 pc range. We combined the WISE, NEOWISE, and Spitzer data to measure a proper

motion of µα cos δ = 337 ± 69 mas yr−1, µδ = −50 ± 97 mas yr−1, which implies a relatively low

tangential velocity in the range 7–22 km s−1.

Keywords: brown dwarfs – infrared: stars – proper motions – solar neighborhood

1. INTRODUCTION

The census of objects in the solar neighborhood has

been growing steadily in recent years (Henry et al. 2018).

The advent of large-area optical and near-infrared sur-

veys (e.g. 2MASS, Skrutskie et al. 2006; SDSS, York

et al. 2000; UKIDSS, Lawrence et al. 2007; VHS, McMa-

hon et al. 2013; PanSTARRS, Chambers et al. 2016;

AllWISE, Cutri et al. 2013), and the recent Gaia sec-
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ond data release (Gaia Collaboration et al. 2018), have

given us the opportunity to identify previously over-

looked members of the 20 pc sample.

Despite recent discoveries of nearby ultracool dwarfs

(Scholz & Bell 2018; Faherty et al. 2018; Cushing et al.

2018; Mamajek et al. 2018), the census of the cold-

est, lowest mass constituents of the solar neighbor-

hood remains largely incomplete. Kirkpatrick et al.

(2019) found that the completeness limit for the T

and Y dwarfs sample steeply declines as a function

of effective temperature (Teff), from 19 pc in the 900–

1050 K interval, down to 8 pc in the 300–450 K inter-

val. At even lower Teff , only one object has been

so far identified, WISE J085510.83–071442.5 (hereafter
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WISE J0855–0714, Luhman 2014), at a distance of

2.3 pc.

The paucity of objects in this temperature regime has

prevented us from answering questions fundamental to

astrophysics: how does star formation create objects of

extremely low mass, and with what efficiency? Whereas

the form of the mass function is well established for

higher mass stars, it is far less constrained for the low-

est mass stars and brown dwarfs. Objects of the lowest

mass, including brown dwarfs, may, in fact, have several

paths to creation depending upon their birth environ-

ment. Studies of star formation regions (e.g. Burgess

et al. 2009) and nearby, young moving groups (Faherty

et al. 2016; Best et al. 2017) have shown that objects

as low-mass as a few Jupiter masses (MJup) can form

in isolation. Older, isolated field objects with these

masses therefore must exist, and will have had many

Gyr to cool, making them cold analogs to planets in

exosolar systems. Although establishing the diversity of

low-mass star formation from cluster to cluster is impor-

tant, observing more of these frigid, free-floating objects

in the well-mixed field population will enable us to de-

termine the frequency with which low-mass objects are

formed across the age of the Galaxy.

Preliminary results from Kirkpatrick et al. (2019)

show that the cutoff mass for star formation, if there is

one, must be lower than 10MJup since the model predic-

tions assuming such a cutoff are already underpredicting

the number of objects found. In order to test cutoffs of

lower mass, we require more objects of extremely low

temperature, akin to WISE J0855–0714.

As its name suggests, WISE J0855–0714 was discov-

ered using data from WISE (Wright et al. 2010), whose

W1 (3.4µm) and W2 (4.6µm) bands are ideally placed

to identify extremely cold brown dwarfs with their red

W1 −W2 colors (in contrast to the blue W1 −W2 col-

ors of stars) because the W2 band measures the peak

of the spectral energy distribution while the W1 band

lies in a region of strong methane absorption (Burrows

et al. 1997). WISE J0855–0714 is relatively bright in

W2 (13.89±0.05 mag, Luhman 2014), and so, despite

the “statistics of one”, Wright et al. (2014) estimated

the 68% confidence range for the number of “0855-like”

objects in the existing AllWISE dataset to be 4–35, with

a median of 15.

Finding more of these hidden solar neighbors is one of

the goals of CatWISE, a NASA Astrophysics Data Anal-

ysis Program (ADAP) funded project combining data

from the 2010 to 2016 phases of the WISE mission, to

generate an all-sky photometric and astrometric catalog

(Eisenhardt et al., in prep.).

Here we present CWISEP J193518.59–154620.3 (here-

after CWISEP J1935–1546), an extremely cold brown

dwarf at ∼8 pc discovered in the preliminary CatWISE

catalog1. Its W1−W2 color, and follow-up Spitzer pho-

tometry, suggest CWISEP J1935–1546 has an effective

temperature comparable to that of WISE J0855–0714,

in the 270–360 K range, making it one of the coldest

brown dwarfs identified so far.

In Section 2, we briefly describe the CatWISE data

processing and the preliminary catalog content; Sec-

tion 3 details the machine-learning-based procedure

used to identify CWISEP J1935–1546; in Section 4 we

present our Spitzer follow-up photometry, and in Sec-

tion 5 we combine the Spitzer data with the WISE data

to refine the motion measurement for this target. Fi-

nally, in Section 6 we derive the basic properties for this

cold new member of the solar neighborhood.

2. CATWISE

CatWISE is an infrared photometric and astrometric

catalog consisting of 900,849,014 sources over the entire

sky selected from WISE and NEOWISE data collected

from 2010 to 2016 at W1 and W2.

CatWISE adapted the AllWISE pipeline to work on

the coadded WISE and NEOWISE images provided by

unWISE (Meisner et al. 2018a,b). A full description of

CatWISE is provided in Eisenhardt et al. (in prep.),

and of the AllWISE pipeline in Cutri et al. (2013) and

Kirkpatrick et al. (2014). Here we summarize the steps

relevant to the discovery of CWISEP J1935–1546.

Source detection for the preliminary CatWISE cat-

alog was performed using MDET (Marsh & Jarrett

2012), which works simultaneously in W1 and W2.

The full-depth unWISE coadds (Meisner et al. 2018b)

were resampled from 2048×2048 (2.75′′/pixel) for-

mat to the 4095×4095 (1.375′′/pixel) format used by

MDET for WISE source detection, using the Image

Co-addition with Optional Resolution Enhancement

software (ICORE, Masci 2013), and an appropriate

point spread function (PSF). The PSF interpolation

kernel smooths the images, providing a matched filter

for optimal detection of isolated point sources. The

“std” unWISE images were used for uncertainties, as

these provide the standard deviation at each coadd

pixel of the individual WISE exposures. The detection

threshold was set at SNR = 1.8, yielding a differential

source reliability of 50% based on deeper Spitzer data

from the S-COSMOS program (Sanders et al. 2007).

1 CWISEP is the official designation for sources identified in
the CatWISE Preliminary catalog, see Eisenhardt et al., in prep.
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The WPHOT software package developed for the All-

WISE pipeline (Cutri et al. 2013), was adapted to per-

form source photometry and astrometry for CatWISE.

Two main changes are worth highlighting here:

(1) For AllWISE, WPHOT propagates each source

position detected by MDET in the coadded images to

individual exposures, solving for the least-square best-

fit to the PSF, to determine source position and fluxes

(hereafter “stationary fit”). An alternative fit is also

performed, allowing for linear motion of the source

through the individual exposures (hereafter “motion

fit”). This solution provides, along with motion, an

alternative measurement of position, propagated to a

chosen reference epoch, as well as fluxes.

For a given inertial position in each sky coverage, the

∼12 exposures which are combined in each unWISE

epoch coadd (Meisner et al. 2018a) are obtained within

less than two days. As a result, the position of sources

beyond the solar system can be assumed to be fixed for

each epoch. Therefore CatWISE used unWISE epoch

coadd images in place of individual exposures when run-

ning WPHOT.

(2) The other significant modification to the AllWISE

version of WPHOT involves the treatment of the PSF

asymmetry. The WISE PSF is asymmetric with respect

to the scanning direction (which is along lines of eclip-

tic longitude). The scan direction is similar for all in-

dividual images in an epoch coadd, and a given iner-

tial position is scanned in opposite directions every six

months, i.e. in consecutive epochs (except very near

an ecliptic pole). Since WPHOT was not designed to

use a time-dependent PSF, CatWISE chose to measure

source properties separately for the (typically four or

more) epoch coadds in each of the two scan directions,

and then merge the two results.

The Preliminary CatWISE Catalog is available at

catwise.github.io, and will soon be available on the

NASA/IPAC Infrared Science Archive2 as well. From

comparison to Spitzer, the signal-to-noise-ratio = 5 Vega

magnitude limits are W1 = 17.58 mag and W2 =

16.43 mag (cf. W1 = 16.90 mag and W2 = 15.95 mag

for AllWISE). From comparison to Gaia DR2 (Linde-

gren et al. 2018), CatWISE measures motions to a 1σ

accuracy of 100 mas yr−1 for sources ∼3 mag fainter

than those measured with a similar accuracy in All-

WISE, and and achieves motion measurement accuracy

that is 10 times better at W2 = 15 mag (Eisenhardt et

al., in prep.), as expected given the longer time baseline

afforded by the combined data.

2 https://irsa.ipac.caltech.edu/

3. TARGET SELECTION

CWISEP J1935–1546 was found as part of our larger

effort to identify and characterize very cold brown

dwarfs using CatWISE. The search was conducted us-

ing the Python package XGBoost3 (Chen & Guestrin

2016), which implements machine learning algorithms

under the gradient boosting framework.

In general applications of supervised learning with

XGBoost, one trains and evaluates an XGBoost model

with a set of previously classified samples. This ground

truth dataset is used throughout the development pro-

cess to find a model with effective features and hyperpa-

rameters. Our application followed this general super-

vised learning paradigm.

We evaluated multiple XGBoost classifiers in target

selection. CWISEP J1935–1546 was selected by our

classifier that targets faint and red objects. More specifi-

cally, the classifier is restricted to training with and clas-

sifying point sources with W2 > 14 mag and W1−W2 >

1 mag, or within 3σ of those limits, therefore consistent

with T or Y spectral type (see e.g. Kirkpatrick et al.

2011).

To build our training set, since the prevalence of our

target class (herein “positive”) is so low, and our com-

pensatory sample weights for the remainder of the data

set (herein “negative”) are also low by consequence,

we manually classified samples for the positive class

versus randomly sampled for the negative class. We

took confirmed objects from the literature, and motion-

confirmed objects from our candidate lists, and cross-

matched them against CatWISE to obtain their Cat-

WISE data. We removed/corrected mismatches until

we were confident that the remaining training set held

an insignificant number of mismatched training objects.

This set, consisting of ≈200 objects, became our positive
class.

We carefully selected sample weights to achieve robust

classification. Firstly, we weighted samples of the posi-

tive and negative class as the inverse proportion of the

total number of objects in each class within the training

data. Consequently, samples belonging to the low pop-

ulation positive class received higher weight, and those

belonging to the high population negative class received

lower weight, so that

nneg∑
i=0

wneg,i =

npos∑
i=0

wpos,i (1)

where wneg,i, wpos,i are the weight for a single member

of the negative and positive class, respectively, and nneg,

3 https://xgboost.readthedocs.io/en/latest/

catwise.github.io
https://irsa.ipac.caltech.edu/
https://xgboost.readthedocs.io/en/latest/
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npos are the total number of objects in the negative and

positive class.

Next, we distributed weights within the positive class

by W2 magnitude, creating an even distribution of to-

tal weights per given 0.5 bin of W2 magnitude. That is,

our training data contained fewer faint W2 magnitude

positive class members, so their weights were propor-

tionally higher than bright W2 magnitude positive class

members. In practice

npos,W2∑
i=0

wpos,W2,i =

npos,W2+0.5∑
i=0

wpos,W2+0.5,i (2)

where wpos,W2,i, wpos,W2+0.5,i are the weight for a single

member of the positive class in a given 0.5 magnitude

bin (e.g. 14.5 ≤ W2 < 15.0 mag) and in the adjacent

magnitude bin, respectively, while npos,W2, npos,W2+0.5

are the total number of objects in the two bins in ques-

tion.

Machine-learning classifiers are defined by two differ-

ent sets of parameters – model parameters and hyperpa-

rameters (also referred to as tuning parameters). Model

parameters are estimated by the machine learning al-

gorithm itself, from the data, as part of the learning

process. Hyperparameters on the other hand cannot

be estimated directly from the data, as they regulate

the learning process itself (see e.g. Kuhn & Johnson

2013). Examples of hyperparameters are the k in k-

nearest neighbor interpolation, or the learning rate for

training. Finding the optimal set of hyperparameters is

itself a complex problem, and several approaches have

been adopted (see Claesen & De Moor 2015, and refer-

ences therein).

We searched with Scikit-learn’s randomized cross-

validation function for optimized hyperparameters

(RandomizedSearchCV; Pedregosa et al. 2011). The

function takes in a model, the training set, a selection

of hyperparameters, and distributions from which to

draw their guesses. It then picks hyperparameter values

from the provided distributions, and trains and tests the

model, searching for the values that optimize the model

performance. However, experimentally we found that a

low learning rate of 0.0135, manually enforced outside of

the parameter search, lead to the greatest reduction of

the classification error rate. The classification error rate

is defined as nwrong/ntot, where nwrong is the number

of misclassified objects, and ntot is the total number of

classified objects (see e.g. Tan 2018, Chapter 4.2).

After first training each XGBoost classifier with our

initial training set, we applied it to the entire Cat-

WISE catalog, and selected the objects (usually between

10,000 and 25,000) with the highest predicted proba-

bility membership in the positive class. We then visu-

ally inspected each object, using available optical, near-

and mid-infrared images (taken from DSS, 2MASS,

UKIDSS, PanSTARRS, and AllWISE) and the online

image blinking/visualization tool WiseView4 (Caselden

et al. 2018). Objects confirmed to be real, withW1−W2

color visually consistent with W1 −W2 > 1 mag, and

with visible motion (confirming they are nearby), were

added to the positive class. Common false positives in-

cluded objects that were found to be unflagged artifacts,

variable sources leading to spurious motion measure-

ments, and partly blended objects with contaminated

photometry and/or astrometry.

We then iterated by re-training the classifier on the

full training data, and applied the re-trained classifier to

the entire catalog to select another batch of high proba-

bility positive class entries. Periodically, we would vali-

date both the manually labelled and randomly sampled

training data to remove mislabelled objects. We would

do this by performing various train-test splits and visu-

ally inspecting negatively labelled entries that had the

highest probability (among such entries) of belonging to

the positive class, as well as the converse case.

The selection yielded an initial sample of 131 late-

T and Y dwarf candidates. After further visual in-

spection, we prioritized 32 with either no detection or

a marginal detection in W1 (hinting at an extremely

low temperature) and visible motion (hinting at their

proximity). These are being followed-up through our

Spitzer campaign (see Section 4) to obtain ch1 (3.6µm)

and ch2 (4.5µm) photometry to confirm/refute their na-

ture and estimate effective temperature and photometric

distance. CWISEP J1935–1546 is the reddest among

the objects followed-up so far, with W2 = 15.926 ±
0.085 mag, W1 −W2 = 2.58 ± 0.37 mag , and ch1–ch2

= 3.24±0.31 mag (see next section).

4. SPITZER FOLLOW-UP

Spitzer observations were taken as part of program

14034 (Meisner, PI). Seven exposures of 30 s were taken

in each band, and these exposures were dithered using a

random dither pattern of medium scale. The number of

individual exposures was chosen so that we would obtain

a 5σ detection at ch1–ch2 = 2.75 mag.

Our target is very faint in the ch1 mosaic, and to mea-

sure it we had to lower the SNR for detection from 5 (the

default value in MOPEX/APEX) down to 2. For the

aperture photometry, we used an aperture with a radius

of 4 pixels (aperture1 in the MOPEX output files) and a

sky annulus with a 24-to-40-pixels radius. For the PRF-

4 http://byw.tools/wiseview

http://byw.tools/wiseview
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Table 1. CatWISE and Spitzer photometry for
CWISEP J1935–1546.

Band Magnitude Notes

CatWISE W1 18.509±0.359 stationary fit (w1mpro)

CatWISE W2 15.926±0.085 stationary fit (w2mpro)

CatWISE W1 18.534±0.396 motion fit (w1mpro pm)

CatWISE W2 15.852±0.079 motion fit (w2mpro pm)

Spitzer ch1 19.089±0.262 aperture

Spitzer ch2 15.633±0.018 aperture

Spitzer ch1 18.892±0.314 PRF fit

Spitzer ch2 15.647±0.023 PRF fit

fit photometry, we used a set of warm PRFs built by Jim

Ingalls (see Kirkpatrick et al. 2019), which are very sim-

ilar to the warm mission PRFs developed by Hora et al.

(2012), that are available on the IRSA website5. For

the aperture photometry, the resulting raw fluxes were

multiplied by the aperture corrections recommended in

Table 4.7 of the IRAC Instrument Handbook – 1.208

for ch1 and 1.221 for ch2 – to obtain the flux in units

of µJy; for PRF-fit photometry, the resulting raw fluxes

were divided by the correction factor recommended in

Table C.1 of the IRAC Instrument Handbook – 1.021

for ch1 and 1.012 for ch2. These aperture and PRF-

fit fluxes were then converted from µJy to magnitudes

using the flux zero points in the Handbook’s Table 4.1

(280.9±4.1 Jy in ch1 and 179.7±2.6 Jy in ch2), prop-

agating the uncertainty in zero point and flux into the

final measurement error. This final photometry is given

in Table 1. The ch1 detection reported here corresponds

to a SNR of 3.6.

CWISEP J1935–1546 has ch1–ch2 = 3.24±0.31 mag

(PRF; the aperture color is 3.46±0.26), overlapping with

WISE J0855–0714 (3.55±0.07 mag), and similar to the

second reddest brown dwarf known, WISE J035000.32-

565830.2 (3.25±0.10 mag; Kirkpatrick et al. 2012). Fig-

ure 1 shows the unWISE W1 and W2 coadds, and our

Spitzer ch1 and ch2 mosaics.

5. ASTROMETRY

The CWISEP J1935–1546 CatWISE measured motion

is µα cos δ = 400 ± 100 mas yr−1, µδ = −90 ± 120 mas

yr−1. However, with the aid of our Spitzer follow-up

observation, we have obtained a better measurement of

the target’s motion.

We first re-registered the unWISE epoch coadds to the

Gaia astrometric frame. We extracted sources from the

individual epoch coadds using the CatWISE pipeline.

5 See http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/
calibrationfiles/.

Because that was run on individual epochs, no “motion

fit” was possible, and therefore the positions used are

those resulting from the “stationary fit” (see Section 2).

We then selected a sample of bright reference stars to

be used for re-registration. We retained only stars with

σα, σδ < 0.1′′, W1 > 8.1 mag and W2 > 6.7 mag (the

saturation limits for WISE ; Cutri et al. 2012). After

these cuts were applied, our initial re-registration set

consisted of more than 10,000 stars at each epoch.

We cross-matched our re-registration set to Gaia DR2.

We used Gaia DR2 astrometry to correct the positions

of all of the Gaia stars in the CatWISE field to the

CatWISE epoch in question, and matched them to the

re-registration set using a 2.75′′ radius (corresponding to

one unWISE pixel), retaining only the closest matching

Gaia source for each re-registration star. We typically

found ∼700 Gaia stars at each epoch.

The re-registration stars were used to fit both a 6th

order and a 12th order transformation between each

epoch coadd and Gaia DR2, using our own IDL code.

The fit included a 3σ clipping iteration, removing re-

registration stars whose re-registered position after the

first fit iteration was off by more than three times the

formal errors of the fit from their Gaia DR2 position.

The use of a 12th order transformation did not signifi-

cantly reduce the residuals of the fit, and therefore we

adopted the 6th order transformation.

To determine reliable uncertainties on the coordinates

of CWISEP J1935–1546 at each epoch, we examined the

dispersion between the re-registered positions of all stars

in the field (without any restriction on their positional

accuracy), and their Gaia DR2 positions. We found that

at W2 ∼ 16 mag (the brightness of CWISEP J1935–

1546) the formal uncertainties reported by WPHOT

underestimate by a factor of ∼1.6 the observed disper-

sion. We therefore multiply the formal uncertainties by
that factor. CatWISE positions and our adopted uncer-

tainties are listed in Table 2.

For the re-registration of the Spitzer ch2 mosaic, and

the measurement of CWISEP J1935–1546 at that epoch,

we adopted the same method described in Kirkpatrick

et al. (2019).

Finally, we performed both a linear fit and a 5-

parameter astrometric fit (position + proper motion +

parallax motion) to the CatWISE and Spitzer ch2 po-

sitions of CWISEP J1935–1546 as a function of time

(listed in Table 2). The target falls below the signal-

to-noise-ratio threshold for detection by the CatWISE

pipeline (SNR = 1.8) in two of the nine WISE plus NE-

OWISE epochs.

The linear fit yielded µα cos δ = 337 ± 69 mas yr−1,

µδ = −50 ± 97 mas yr−1, while the 5-parameter astro-

http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/calibrationfiles/
http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/calibrationfiles/
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Figure 1. 1 × 1 arcmin cutouts from the unWISE W1 and W2 epoch coadds (top left and right), and the Spitzer ch1 and ch2
mosaic (bottom left and right), centered around CWISEP J1935–1546. Red circles mark its position at the two epochs shown.

metric fit yielded µα cos δ = 341 ± 90 mas yr−1, µδ =

−36 ± 113 mas yr−1, and a trigonometric parallax of

−100 ± 440 mas. The negative parallax is clearly un-

physical and not statistically significant. We therefore

adopt the values from the linear fit. The results of the

linear fit are presented in Figure 2.

6. ANALYSIS

The ch1–ch2 color for CWISEP J1935–1546 is com-

parable to that of the coldest brown dwarf known,

WISE J0855–0714. In Figure 3 we show Teff as a func-

tion of Spitzer ch1–ch2 color for a sample of known late-

T and Y dwarfs from the literature (see Kirkpatrick et al.

2019, and references therein).

We can use our Spitzer photometry and the recent

polynomial relations presented in Kirkpatrick et al.

(2019) to derive an effective temperature estimate and
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Table 2. Measured positions for CWISEP J1935–1546. The
2019 position was obtained through our Spitzer follow-up.
The target is undetected in two of the nine unWISE epoch
coadds.

R.A. σR.A. Dec. σDec. Epoch

(deg) (arcsec) (deg) (arcsec)

293.8267517 0.9 -15.7722349 1.4 2010.2842

293.8270569 1.0 -15.7723198 1.3 2010.7764

293.8275452 1.2 -15.7720318 1.1 2015.2857

293.8275146 1.1 -15.7723351 1.4 2015.7695

293.8275452 1.1 -15.7723131 1.3 2016.7525

293.8276062 1.4 -15.7726307 1.4 2017.2799

293.8276978 1.1 -15.7723455 1.2 2017.7436

293.8277930 0.01 -15.7723462 0.01 2019.0267

−8 −6 −4 −2 0
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2

−8 −6 −4 −2 0
t − 2019.0246 (yr)
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2
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Figure 2. A linear fit to the coordinates of CWISEP J1935–
1546 as a function of time. R.A. (red diamonds), Dec. (blue
triangles), and time are relative to their variance-weighted
mean.
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Figure 3. Teff as a function of Spitzer ch1–ch2 colors for
nearby late-T and Y dwarfs. Black points are objects taken
from Kirkpatrick et al. (2019, Table 8). The red dashed
lines encompass the 1σ color range for CWISEP J1935–1546.
Overplotted in blue is the polynomial relation presented in
Kirkpatrick et al. (2019).

photometric distance for CWISEP J1935–1546. Using

the ch1–ch2 color to absolute ch2 magnitude relation,

we obtain a 1σ distance estimate of 5.6–10.9 pc. Given

this estimated distance and the proper motion measured

here, CWISEP J19351546 has an estimated tangential

velocity in the range 7–22 km s−1, consistent with the

tangential velocity distribution for L, T and Y dwarfs

in the solar neighborhood from Smart et al. (2019) and

Kirkpatrick et al. (2019).

The ch1–ch2 colour to Teff relation from Kirkpatrick

et al. (2019) indicates a Teff in the range ∼270–360 K,

which would make CWISEP J1935–1546 one of the cold-

est brown dwarfs discovered so far (see Figure 3).

Given the temperature derived above, we can estimate

a mass for this object using the BT-Settl models (Allard

et al. 2012, 2013). If we assume CWISEP J1935–1546

is a field object, with age in the ∼500 Myr – 13 Gyr

range, it would have a mass in the range 2–20MJup.

We can narrow down the age and mass range by taking

into account the fact that the tangential velocity esti-

mated here is consistent with the population of nearby

ultracool dwarfs, whose age is in the range ∼1.5–6.5 Gyr

(see e.g. Wang et al. 2018, and references therein). In

this age range, CWISEP J1935–1546 would have a mass

between 3 and 14MJup.

No other photometry is currently available for this

object, as it is well below the detection threshold for

existing optical and near-infrared surveys. The posi-

tion of CWISEP J1935–1546 is covered by VHS and

PanSTARRS, but the target is undetected in both, as

well as in the W3 and W4 images from AllWISE. Given

the Teff and distance ranges estimated above, the ex-

pected H magnitude would be 23.7–25.1 mag, a depth

prohibitive for most ground-based facilities, particularly

for spectroscopy. Spectroscopic characterization for this

extremely cold object will necessarily have to wait for

the launch of JWST.

The discovery of CWISEP J1935–1546 starts to bridge

the existing gap between known warmer Y dwarfs and

the extremely cold WISE J0855–0714. CatWISE, as well

as “Backyard Worlds: Planet 9” (a NASA-funded citi-

zen science project; Kuchner et al. 2017) are now fully

exploiting the potential of the WISE and NEOWISE

data set to uncover more of these frigid, free-floating

planetary mass objects. CWISEP J1935–1546 is part of

a larger sample of discoveries by these two highly com-

plementary projects, and joint observing campaigns are

now underway to fully characterize this compelling pop-

ulation. By populating this region of parameter space

we can not only put strong observational constraints

on the mass function for extremely low mass objects,
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but also understand the processes that shape such cold,

planet-like atmospheres.
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