28 research outputs found

    Electronic Structure of a Hydrogenic Acceptor Impurity in Semiconductor Nano-structures

    Get PDF
    The electronic structure and binding energy of a hydrogenic acceptor impurity in 2, 1, and 0-dimensional semiconductor nano-structures (i.e. quantum well (QW), quantum well wire (QWW), and quantum dot (QD)) are studied in the framework of effective-mass envelope-function theory. The results show that (1) the energy levels monotonically decrease as the quantum confinement sizes increase; (2) the impurity energy levels decrease more slowly for QWWs and QDs as their sizes increase than for QWs; (3) the changes of the acceptor binding energies are very complex as the quantum confinement size increases; (4) the binding energies monotonically decrease as the acceptor moves away from the nano-structures’ center; (5) as the symmetry decreases, the degeneracy is lifted, and the first binding energy level in the QD splits into two branches. Our calculated results are useful for the application of semiconductor nano-structures in electronic and photoelectric devices

    Implementing precision methods in personalizing psychological therapies: barriers and possible ways forward

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: No data was used for the research described in the article.Highlights: • Personalizing psychological treatments means to customize treatment for individuals to enhance outcomes. • The application of precision methods to clinical psychology has led to data-driven psychological therapies. • Applying data-informed psychological therapies involves clinical, technical, statistical, and contextual aspects

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    'And end history. And go to the stars': Terence McKenna and 2012

    No full text
    Terence McKenna (1946-2000) was a central fi gure in the underground New Age culture mostly referred to as ‘psychedelic shamanism’. In a book published together with his brother Dennis (! e Invisible Landscape, 1975) he developed a grand macrohistorical theory called the ‘Eschaton Timewave’, which turns out to be at the very origin of the widespread contemporary movement of New Age millenarianism according to which the eschaton will arrive on December 21 2012. In this article I analyze the story of how Terence and Dennis McKenna developed their theory in an eff ort to make sense of a religious ‘revelation’ that happened to them during a psychedelic experiment in the Colombian Amazon in 1971; furthermore I analyze the theory itself, and the chain of reasoning by means of which it seeks to prove that a series of historical ‘cycles’ will all terminate in 2012. Although 2012 millenarianism has spawned a small library of popular literature since the mid-1980s, almost no research has been done into this phenomenon as such, its origins, its theoretical underpinnings, the authors responsible for it, or the current of alternative spirituality from his it has emerged. " is article hopes to make a fi rst contribution to correcting that situation

    Corrigendum: Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean

    No full text
    A corrigendum on Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean by Mayol, E., Jiménez, M. A., Herndl, G. J., Duarte, C. M., and Arrieta, J. M. (2014). Front. Microbiol. 5:557. doi: 10.3389/fmicb.2014.00557 We found an implementation error in the calculation of the deposition velocity (vd) which, in turn, affected all the estimated vd-depending parameters (deposition flux, residence time, and traveled distance by microorganisms). Deposition fluxes are now somewhat lower than previously estimated, resulting in residence times and traveled distances longer than those previously estimated. In addition, the spray fluxes were calculated using a spray generation function (dF/dr0) valid for droplets of radii between 0.5 and 12 μm proposed by Blanchard (1963) and Gathman (1982) as corrected by Andreas et al. (1995). However, in the calculation of dF/dr0, we exceeded this valid range of radii given that we included droplets with radii from 0.2 μm according to the small size of some microbial cells. Thus, a different formulation of dF/dr0, developed by Gong (2003), is now used for the estimation of spray fluxes of microbes, which is valid even for small droplets from a radius of 0.07 μm. Below, we offer a new corrected version of the paragraphs affected by corrections along the text. In addition, we show corrected versions of Figure 1 (forward trajectories according residence times), Figure 3 (deposition velocity values), Figure 5 (spray and deposition fluxes), Figure 6 (Net fluxes), and Table 1. The authors apologize for the errors in the estimates reported in the original manuscript. These corrections only affect the magnitude of some of the reported variables and even though they do not change the scientific conclusions of the article they are reported here for accuracy and reproducibility

    Extraction, analysis and interpretation of intracrystalline amino acids from fossils

    No full text
    A new protocol for the extraction and analysis of intracrystalline macromolecules has been developed that allows the rapid determination of the amino-acid composition of fossils. The technique utilizes decalcification with 2 M HCI, characterization of the soluble fraction of the biomolecules by automated amino-acid analysis, and differentiation using multivariate statistics. Compared to other methods, this technique allows sampling of indigenous degraded proteins in addition to the preserved remains of peptides, leading to the recovery of data from more reliable indigenous sources. Although the extraction method is demonstrated using fossil samples to demonstrate gross phylogenetic differences, there is much potential to use these biomolecules for a wide range of application
    corecore