24 research outputs found

    Considerations for the development of Computer-assisted Language Learning (CALL) teacher training course: a practical experience from a CALL course development in Indonesia

    Get PDF
    The need for technology training for teachers will keep on growing in line with the development of technology itself. Although technology nowadays is more and more user friendly and may need no specific training on how to use it, teachers need to possess the knowledge that underpins the idea of using it for teaching and learning process. Teachers need to have solid pedagogical knowledge on how to use the technology to deliver contents to their students. Therefore, a technology-training course for teachers is always necessary. This paper presents the partial results of a design based study/research (DBR) on the development of online technology training for teachers with focus on CALL in Indonesia. Questions regarding factors affecting online CALL course and ways to improve the course in terms of training materials, activities, as well as the administration of the training are addressed in the study. Based on the study, some considerations on how to design such technology-training course are proposed. The considerations are ranging from aspects associated with technology competence for teacher standards, constructivism in online learning, adult learning theory, online instructional models, the technology, pedagogy and content knowledge (TPACK) framework and open educational resources (OER). Information regarding those aspects will be useful to assist other CALL teacher training course developers later to inform their decision in the development of the course which is based on a good theoretical understanding as well as highly practical in learning activitie

    Measurements of long-range electronic correlations during femtosecond diffraction experiments performed on nanocrystals of buckminsterfullerene

    No full text
    The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treated as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C60. Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. This paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data

    Measurements of long-range electronic correlations during femtosecond diffraction experiments performed on nanocrystals of buckminsterfullerene

    No full text
    The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treated as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C 60 . Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C 60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. This paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data
    corecore