1,525 research outputs found

    Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Comparison

    Get PDF
    Knowledge of the relative stabilities of alane (AlH3) complexes with electron donors is essential for identifying hydrogen storage materials for vehicular applications that can be regenerated by off-board methods; however, almost no thermodynamic data are available to make this assessment. To fill this gap, we employed the G4(MP2) method to determine heats of formation, entropies, and Gibbs free energies of formation for thirty-eight alane complexes with NH3-nRn (R = Me, Et; n = 0-3), pyridine, pyrazine, triethylenediamine (TEDA), quinuclidine, OH2-nRn (R = Me, Et; n = 0-2), dioxane, and tetrahydrofuran (THF). Monomer, bis, and selected dimer complex geometries were considered. Using these data, we computed the thermodynamics of the key formation and dehydrogenation reactions that would occur during hydrogen delivery and alane regeneration, from which trends in complex stability were identified. These predictions were tested by synthesizing six amine-alane complexes involving trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and hexamine, and obtaining upper limits of delta G for their formation from metallic aluminum. Combining these computational and experimental results, we establish a criterion for complex stability relevant to hydrogen storage that can be used to assess potential ligands prior to attempting synthesis of the alane complex. Based on this, we conclude that only a subset of the tertiary amine complexes considered and none of the ether complexes can be successfully formed by direct reaction with aluminum and regenerated in an alane-based hydrogen storage system.Comment: Accepted by the Journal of Physical Chemistry

    Tomographic Separation of Composite Spectra. VIII. The Physical Properties of the Massive Compact Binary in the Triple Star System HD 36486 (delta Orionis A)

    Full text link
    Double-lined spectroscopic orbital elements have recently been found for the central binary in the massive triple, delta Orionis A based on radial velocities from cross-correlation techniques applied to IUE high dispersion spectra and He I 6678 spectra obtained at Kitt Peak. The primary and secondary velocity amplitudes were found to be 94.9 +/- 0.6 km/s and 186 +/- 9 km/s respectively. Tomographic reconstructions of the primary and secondary stars' spectra confirm the O9.5 II classification of the primary and indicate a B0.5 III type for the secondary. The widths of the UV cross-correlation functions are used to estimate the projected rotational velocities, Vsin i = 157 +/- 6 km/s and 138 +/- 16 km/s for the primary and secondary, respectively implying that both stars rotate faster than their orbital motion. We used the spectroscopic results to make a constrained fit of the Hipparcos light curve of this eclipsing binary, and the model fits limit the inclination to the range between 67 and 77 degrees. The i = 67 degrees solution, which corresponds to a near Roche-filling configuration, results in a primary mass of 11.2 solar masses and a secondary mass of 5.6 solar masses, both of which are substantially below the expected masses for stars of their luminosity. This binary may have experienced a mass ratio reversal caused by Case A Roche lobe overflow, or the system may have suffered extensive mass loss through a binary interaction, perhaps during a common envelope phase, in which most of the primary's mass was lost from the system rather than transferred to the secondary.Comment: 27 pages, 15 figures in press, the Astrophysical Journal, February 1, 200

    Informatics and data mining tools and strategies for the Human Connectome Project

    Get PDF
    The Human Connectome Project (HCP) is a major endeavor that will acquire and analyze connectivity data plus other neuroimaging, behavioral, and genetic data from 1,200 healthy adults. It will serve as a key resource for the neuroscience research community, enabling discoveries of how the brain is wired and how it functions in different individuals. To fulfill its potential, the HCP consortium is developing an informatics platform that will handle: 1) storage of primary and processed data, 2) systematic processing and analysis of the data, 3) open access data sharing, and 4) mining and exploration of the data. This informatics platform will include two primary components. ConnectomeDB will provide database services for storing and distributing the data, as well as data analysis pipelines. Connectome Workbench will provide visualization and exploration capabilities. The platform will be based on standard data formats and provide an open set of application programming interfaces (APIs) that will facilitate broad utilization of the data and integration of HCP services into a variety of external applications. Primary and processed data generated by the HCP will be openly shared with the scientific community, and the informatics platform will be available under an open source license. This paper describes the HCP informatics platform as currently envisioned and places it into the context of the overall HCP vision and agenda

    Direct Visualization of 3-Dimensional Force and Energy Map of a Single Molecular Switch

    Get PDF
    Mechanical properties of molecules adsorbed on materials surfaces are increasingly vital for the applications of molecular thin films. Here, we conduct a fundamental research to induce conformational change mechanically on a single molecule and quantify the driving force needed for such molecular shape switch via a low temperature (~ 5K) Scanning Tunneling Microscope (STM) and Qplus Atomic Force Microscope (Q+AFM). Our measurement maps a three-dimensional landscape for mechanical potential and force at single molecule level with high spatial resolution in all three dimensions of a few angstrom (10-10 m). Molecule TBrPP-Co (a cobalt porphyrin) deposited on an atomically clean gold substrate typically has two of its pentagon rings tilted upward and the other two downward. An atomically sharp tip of the STM/Q+AFM, which vibrates with a high frequency (~ 30kHz), is employed to scan the molecule at different heights with 0.1Å increment and meanwhile record tip-molecule interaction strength in the form of tip frequency change. When tip approaches to the threshold distance to the molecule, mechanical force become large enough and cause pentagon rings flip their direction. Due to the sensitive nature of tip-molecule interaction, the rings flipping can be directly visualized by STM, as rings tilting upward exhibit two bright protrusions in contrast to rings downward in image. By processing frequency change, we obtain a three-dimensional mechanical potential and force map for a single molecule with the resolution of angstrom level in all three dimensions. Our preliminary results indicate that an energy barrier of ~400meV needs to be overcome for rings flipping of TBrPP-Co.https://digitalcommons.odu.edu/gradposters2021_sciences/1015/thumbnail.jp

    Electron affinities of the first- and second- row atoms: benchmark ab initio and density functional calculations

    Full text link
    A benchmark ab initio and density functional (DFT) study has been carried out on the electron affinities of the first- and second-row atoms. The ab initio study involves basis sets of spdfghspdfgh and spdfghispdfghi quality, extrapolations to the 1-particle basis set limit, and a combination of the CCSD(T), CCSDT, and full CI electron correlation methods. Scalar relativistic and spin-orbit coupling effects were taken into account. On average, the best ab initio results agree to better than 0.001 eV with the most recent experimental results. Correcting for imperfections in the CCSD(T) method improves the mean absolute error by an order of magnitude, while for accurate results on the second-row atoms inclusion of relativistic corrections is essential. The latter are significantly overestimated at the SCF level; for accurate spin-orbit splitting constants of second-row atoms inclusion of (2s,2p) correlation is essential. In the DFT calculations it is found that results for the 1st-row atoms are very sensitive to the exchange functional, while those for second-row atoms are rather more sensitive to the correlation functional. While the LYP correlation functional works best for first-row atoms, its PW91 counterpart appears to be preferable for second-row atoms. Among ``pure DFT'' (nonhybrid) functionals, G96PW91 (Gill 1996 exchange combined with Perdew-Wang 1991 correlation) puts in the best overall performance. The best results overall are obtained with the 1-parameter hybrid modified Perdew-Wang (mPW1) exchange functionals of Adamo and Barone [J. Chem. Phys. {\bf 108}, 664 (1998)], with mPW1LYP yielding the best results for first-row, and mPW1PW91 for second-row atoms. Indications exist that a hybrid of the type aa mPW1LYP + (1a)(1-a) mPW1PW91 yields better results than either of the constituent functionals.Comment: Phys. Rev. A, in press (revised version, review of issues concerning DFT and electron affinities added

    A colanic acid operon deletion mutation enhances induction of early antibody responses by live attenuated salmonella vaccine strains

    Get PDF
    Colanic acid (CA) is a common exopolysaccharide produced by many genera in the Enterobacteriaceae. It is critical for biofilm formation on HEp-2 cells and on chicken intestinal tissue by Salmonella. In this study, we generated different CA synthesis gene mutants and evaluated the immune responses induced by these mutants. One of these mutations, Δ(wza-wcaM)8, which deleted the whole operon for CA synthesis, was introduced into two Salmonella vaccine strains attenuated by auxotrophic traits or by the regulated delayed attenuation strategy (RDAS). The mice immunized with the auxotrophic Salmonella vaccine strain with the deletion mutation Δ(wza-wcaM)8 developed higher vaginal IgA titers against the heterologous protective antigen and higher levels of antigen-specific IgA secretion cells in lungs. In Salmonella vaccine strains with RDAS, the strain with the Δ(wza-wcaM)8 mutation resulted in higher levels of protective antigen production during in vitro growth. Mice immunized with this strain developed higher serum IgG and mucosal IgA antibody responses at 2 weeks. This strain also resulted in better gamma interferon (IFN-γ) responses than the strain without this deletion at doses of 10(8) and 10(9) CFU. Thus, the mutation Δ(wza-wcaM)8 will be included in various recombinant attenuated Salmonella vaccine (RASV) strains with RDAS derived from Salmonella enterica serovar Paratyphi A and Salmonella enterica serovar Typhi to induce protective immunity against bacterial pathogens

    Surface reconstruction induced geometries of Si clusters

    Full text link
    We discuss a generalization of the surface reconstruction arguments for the structure of intermediate size Si clusters, which leads to model geometries for the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61 (two isomers). The common feature in all these models is a structure that closely resembles the most stable reconstruction of Si surfaces, surrounding a core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and the electronic structure of these models through first-principles density functional theory calculations. These models may be useful in understanding experimental results on the reactivity of Si clusters and their shape as inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys. Rev.
    corecore