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Introduction: We have carried out a computational study of protolytic cracking,
dehydrogenation, and H/D exchange of ethane, propane, and butane using a cluster
model of H-ZSM-5. Our previous work has demonstrated that quantum-chemical
techniques can give quantitatively accurate activation energies for alkane cracking in
zeolites [1]. Experimental kinetic studies have shown that the apparent activation
energies for cracking and H/D exchange decrease with n-alkane chain length, while
for dehydrogenation the energies increase [2,3]. Our goal is to study the dependence
of the activation energy on the alkane chain length in these reactions and to
understand why the dehydrogenation reaction behaves so differently.

Theoretical Methods: We optimized the geometries of each structure using the
HF/6-31 G(d) method and the B3LYP/6-31 G(d) level of density fi.mctional theory.
Our transition state structures have only one imaginary vibrational frequency,
corresponding to the reaction coordinate. Our cluster model for the zeolite
framework, denoted 5T, has five tetrahedral atoms and is terminated by H atoms at
its periphery. To determine the activation barriers, we calculated corrections for (i)
scaled zero-point energies and thermal corrections for the experimental reaction
temperature of 773 K; (ii) an extended basis set, calculated at the B3LYP/6-
31 l+G(3df,2p) level; and (iii) the long-range electrostatic effects of the zeolite
framework. The electrostatic correction was determined by performing a partial
optimization of each transition state in a much larger zeolite cluster model
constructed from the experimental geometry of H-ZSM-5.

Results and Discussion: A schematic potential energy surface for protolytic
dehydrogenation of propane is shown in Fig. 1. Starting from an adsorbed complex
(ZOH”””C3H8),the acidic proton attacks a terminal C-H bond. Via an ionic transition
state (ZO-””OC3H9+)this forms H2 and a surface-bound propoxy species (ZOC3H7). In
order to close the catalytic cycle, a proton is abstracted from the propoxy species by a
nearby framework oxygen atom. This proceeds through another transition state (ZO-
“O”H+”.”C3H6)to form a new Bronsted acid site with an adsorbed propene molecule
(ZOH0..C3H6). The final step is propene resorption. Previous experimental and
computational studies suggest that the rate-limiting step for protolytic cracking of n-
alkanes by acidic zeolites is the initial protonation of the adsorbed alkane molecule.
Narbeshuber et al. [2] concurred but provided evidence from kinetic isotope effect
studies that the initial protonation is not the rate-limiting step for dehydrogenation of
alkanes. Instead, they suggested that the resorption of the product alkene is rate-
limiting, and that this might explain the observed increase of activation energy with

alkane chain length.
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Fig. 1. Schematic potential energy surface for dehydrogenation of propane. Energies
in parentheses include zero-point corrections.

However, this proposed explanation does not agree with available
thermochemical data for the relative stability of n-alkanes (i.e., C3H8)with respect to
their corresponding dehydrogenation products (C3H6+ Hz). If the desorption of the
product alkene were rate-limiting, the apparent barrier for dehydrogenation would
simply be the enthalpy difference between the alkane and its corresponding alkene +
H2. To explain the observed increase of activation energy with alkane chain length,
this enthalpy difference would be expected to increase as chain length increases.
However, experimental thermochemical data indicate that this enthaIpy difference is
very nearly constant, having a value of about 30 kcal/mol for propane, This fact is
very difficult to reconcile with the apparent barriers of 23 and 16 kcal/mol measured
by Narbeshuber et al. for propane dehydrogenation in H-ZSM-5 and H-Y zeolites,
respectively [2].

Our preliminary results indicate that the apparent barriers for both cracking and
dehydrogenation reactions decrease as the alkane chain length increases, and that the
initial protonation step in both reactions is rate-limiting. Possible reasons for this
discrepancy between computational and experimental results will be discussed.
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