31,615 research outputs found

    Effects of argon ion injections in the plasmasphere

    Get PDF
    In lifting massive space power system payloads from low Earth orbit to geosynchronous Earth orbit, Cargo Orbit Transfer (COTV) using ion propulsion will inject energetic beams of argon ions into the plasmasphere. The relationship of the beam velocity to Alfven and thermal velocities as a function of radial distance in the plasmasphere is given for positions near the Earth's equatorial plane. A beam sheath loss model is used which results in a deposition of argon ions and hence energy in the plasmasphere which is much less than that in models calling for clouds or plasma instabilities to rapidly stop the beam. A comparison is given of the cumulative fractional mass loss of an ion beam injected at 1.5 R for the ion cloud and the ion beam sheath loss process. The integrated difference of these two deposition models is shown for the construction of one SPS

    Oblique triangular antiferromagnetic phase in CsCu1āˆ’x_{1-x}Cox_xCl3_3

    Full text link
    The spin-1/2 stacked triangular antiferromagnet CsCu1āˆ’x_{1-x}Cox_xCl3_3 with 0.015<x<0.0320.015<x<0.032 undergoes two phase transitions at zero field. The low-temperature phase is produced by the small amount of Co2+^{2+} doping. In order to investigate the magnetic structures of the two ordered phases, the neutron elastic scattering experiments have been carried out for the sample with xā‰ˆ0.03x\approx 0.03. It is found that the intermediate phase is identical to the ordered phase of CsCuCl3_3, and that the low-temperature phase is an oblique triangular antiferromagnetic phase in which the spins form a triangular structure in a plane tilted from the basal plane. The tilting angle which is 42āˆ˜^{\circ} at T=1.6T=1.6 K decreases with increasing temperature, and becomes zero at TN2=7.2T_{\rm N2} =7.2 K. An off-diagonal exchange term is proposed as the origin of the oblique phase.Comment: 6 pages, 7 figure

    Development and three-dimensional morphology of the zygomaticotemporal suture in primate skulls

    Get PDF
    Cranial sutures are an essential part of the growing skull, allowing bones to increase in size during growth, with their morphology widely believed to be dictated by the forces and displacements that they experience. The zygomaticotemporal suture in primates is located in the relatively weak zygomatic arch, and externally it appears a very simple connection. However, large forces are almost certainly transmitted across this suture, suggesting that it requires some level of stability while also allowing controlled movements under high loading. Here we examine the 2- and 3-dimensional (3D) morphology of the zygomaticotemporal suture in an ontogenetic series of Macaca fascicularis skulls. High resolution microcomputed tomography data sets were examined, and virtual and physical 3D replicas were created to assess both structure and general stability. The zygomaticotemporal suture is much more complex than its external appearance suggests, with interlocking facets between the adjacent zygomatic and temporal bones. It appears as if some movement is permitted across the suture in younger animals, but as they approach adulthood the complexity of the suture's interlocking bone facets reaches a level where these movements become minimal
    • ā€¦
    corecore