2,148 research outputs found

    Modelling Heat Transfer of Carbon Nanotubes

    Full text link
    Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic device. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or experiments. Simulations show that nanotube arrays have unique cooling characteristics due to its anisotropic thermal conductivity.Comment: 10 pages, 4 figure

    Intoxicated eyewitnesses:the effect of a fully balanced placebo design on event memory and metacognitive control

    Get PDF
    Few studies have examined the impact of alcohol on metacognition for witnessed events. We used a 2x2 balanced placebo design, where mock-witnesses expected and drank alcohol, did not expect but drank alcohol, did not expect nor drank alcohol, or expected but did not drink alcohol. Participants watched a mock-crime in a bar-lab, followed by free recall and a cued-recall test with or without the option to reply ‘don’t know’ (DK). Intoxicated mock-witnesses’ free recall was less complete but not less accurate. During cued-recall, alcohol led to lower accuracy, and reverse placebo participants gave more erroneous and fewer correct responses. Permitting and clarifying DK responses was associated with fewer errors and more correct responses for sober individuals; and intoxicated witnesses were less likely to opt out of erroneous responding to unanswerable questions. Our findings highlight the practical and theoretical importance of examining pharmacological effects of alcohol and expectancies in real-life settings

    Supersymmetry Breaking Triggered by Monopoles

    Full text link
    We investigate N = 1 supersymmetric gauge theories where monopole condensation triggers supersymmetry breaking in a metastable vacuum. The low-energy effective theory is an O'Raifeartaigh-like model of the kind investigated recently by Shih where the R-symmetry can be spontaneously broken. We examine several implementations with varying degrees of phenomenological interest.Comment: 20 pages, 4 figures (v2: minor clarifications and typos fixed

    Weighted-density approximation for general nonuniform fluid mixtures

    Get PDF
    In order to construct a general density-functional theory for nonuniform fluid mixtures, we propose an extension to multicomponent systems of the weighted-density approximation (WDA) of Curtin and Ashcroft [Phys. Rev. A 32, 2909 (1985)]. This extension corrects a deficiency in a similar extension proposed earlier by Denton and Ashcroft [Phys. Rev. A 42, 7312 (1990)], in that that functional cannot be applied to the multi-component nonuniform fluid systems with spatially varying composition, such as solid-fluid interfaces. As a test of the accuracy of our new functional, we apply it to the calculation of the freezing phase diagram of a binary hard-sphere fluid, and compare the results to simulation and the Denton-Ashcroft extension.Comment: 4 pages, 4 figures, to appear in Phys. Rev. E as Brief Repor

    Forced Chemical Vapor Infiltration of Tubular Geometries: Modeling, Design, and Scale-Up

    Get PDF
    In advanced indirectly fired coal combustion systems and externally fired combined cycle concepts, ceramic heat exchangers are required to transfer heat from the hot combustion gases to the clean air that drives the gas turbines. For high efficiencies, the temperature of the turbine inlet needs to exceed 1,100 C and preferably be about 1,260 C. The heat exchangers will operate under pressure and experience thermal and mechanical stresses during heating and cooling, and some transients will be severe under upset conditions. Silicon carbide-matrix composites appear promising for such applications because of their high strength at elevated temperature, light weight, thermal and mechanical shock resistance, damage tolerance, and oxidation and corrosion resistance. The development of thick-walled, tubular ceramic composites has involved investigations of different fiber architectures and fixturing to obtain optimal densification and mechanical properties. The current efforts entail modeling of the densification process in order to increase densification uniformity and decrease processing time. In addition, the process is being scaled to produce components with a 10 cm outer diameter

    Networks and landscapes: a framework for setting goals and evaluating performance at the large landscape scale

    Get PDF
    The objective of large landscape conservation is to mitigate complex ecological problems through interventions at multiple and overlapping scales. Implementation requires coordination among a diverse network of individuals and organizations to integrate local‐scale conservation activities with broad‐scale goals. This requires an understanding of the governance options and how governance regimes achieve objectives or provide performance evaluation across both space and time. However, empirical assessments measuring network‐governance performance in large landscape conservation are limited. We describe a well‐established large landscape conservation network in North America, the Roundtable on the Crown of the Continent, to explore the application of a social–ecological performance evaluation framework. Systematic approaches to setting goals, tracking progress, and collecting data for feedback can help guide adaptation. Applying the established framework to our case study provides a means of evaluating the effectiveness of network governance in large landscape conservation

    The phonon theory of liquid thermodynamics

    Get PDF
    Heat capacity of matter is considered to be its most important property because it holds information about system's degrees of freedom as well as the regime in which the system operates, classical or quantum. Heat capacity is well understood in gases and solids but not in the third state of matter, liquids, and is not discussed in physics textbooks as a result. The perceived difficulty is that interactions in a liquid are both strong and system-specific, implying that the energy strongly depends on the liquid type and that, therefore, liquid energy can not be calculated in general form. Here, we develop a phonon theory of liquids where this problem is avoided. The theory covers both classical and quantum regimes. We demonstrate good agreement of calculated and experimental heat capacity of 21 liquids, including noble, metallic, molecular and hydrogen-bonded network liquids in a wide range of temperature and pressure.Comment: 7 pages, 4 figure

    Soap Froths and Crystal Structures

    Full text link
    We propose a physical mechanism to explain the crystal symmetries found in macromolecular and supramolecular micellar materials. We argue that the packing entropy of the hard micellar cores is frustrated by the entropic interaction of their brush-like coronas. The latter interaction is treated as a surface effect between neighboring Voronoi cells. The observed crystal structures correspond to the Kelvin and Weaire-Phelan minimal foams. We show that these structures are stable for reasonable areal entropy densities.Comment: 4 pages, RevTeX, 2 included eps figure

    The in vitro effects of artificial and natural sweeteners on the immune system using whole blood culture assays

    Get PDF
    This article investigates the effects of commercially available artificial (aspartame, saccharin, sucralose) and natural sweeteners (brown sugar, white sugar, molasses) on the immune system. Human whole blood cultures were incubated with various sweeteners and stimulated in vitro with either phytohemagglutinin or endotoxin. Harvested supernatants were screened for cytotoxicity and cytokine release. Results showed that none of the artificial or natural sweeteners proved to be cytotoxic, indicating that no cell death was induced in vitro. The natural sweetener, sugar cane molasses (10 ug=mL), enhanced levels of the inflammatory biomarker IL-6 while all artificial sweeteners (10 ug=mL) revealed a suppressive effect on IL-6 secretion (P<0.001). Exposure of blood cells to sucralose-containing sweeteners under stimulatory conditions reduced levels of the biomarker of humoral immunity, Interleukin-10 (P<0.001). The cumulative suppression of Interleukin-6 and Interleukin-10 levels induced by sucralose may contribute to the inability in mounting an effective humoral response when posed with an exogenous threat.Web of Scienc
    • 

    corecore