31 research outputs found

    Phase I, Dose-Escalation, Two-Part Trial of the PARP Inhibitor Talazoparib in Patients with Advanced Germline BRCA1/2 Mutations and Selected Sporadic Cancers

    Get PDF
    Talazoparib inhibits PARP catalytic activity, trapping PARP1 on damaged DNA and causing cell death in BRCA1/2-mutated cells. We evaluated talazoparib therapy in this two-part, phase I, first-in-human trial. Antitumor activity, MTD, pharmacokinetics, and pharmacodynamics of once-daily talazoparib were determined in an open-label, multicenter, dose-escalation study (NCT01286987). The MTD was 1.0 mg/day, with an elimination half-life of 50 hours. Treatment-related adverse events included fatigue (26/71 patients; 37%) and anemia (25/71 patients; 35%). Grade 3 to 4 adverse events included anemia (17/71 patients; 24%) and thrombocytopenia (13/71 patients; 18%). Sustained PARP inhibition was observed at doses ≥0.60 mg/day. At 1.0 mg/day, confirmed responses were observed in 7 of 14 (50%) and 5 of 12 (42%) patients with BRCA mutation–associated breast and ovarian cancers, respectively, and in patients with pancreatic and small cell lung cancer. Talazoparib demonstrated single-agent antitumor activity and was well tolerated in patients at the recommended dose of 1.0 mg/day

    Kinetics and Ligand-Binding Preferences of Mycobacterium tuberculosis Thymidylate Synthases, ThyA and ThyX

    Get PDF
    Mycobacterium tuberculosis kills approximately 2 million people each year and presents an urgent need to identify new targets and new antitubercular drugs. Thymidylate synthase (TS) enzymes from other species offer good targets for drug development and the M. tuberculosis genome contains two putative TS enzymes, a conventional ThyA and a flavin-based ThyX. In M. tuberculosis, both TS enzymes have been implicated as essential for growth, either based on drug-resistance studies or genome-wide mutagenesis screens. To facilitate future small molecule inhibitors against these proteins, a detailed enzymatic characterization was necessary.After cloning, overexpression, and purification, the thymidylate-synthesizing ability of ThyA and ThyX gene products were directly confirmed by HPLC analysis of reaction products and substrate saturation kinetics were established. 5-Fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) was a potent inhibitor of both ThyA and ThyX, offering important clues to double-targeting strategies. In contrast, the folate-based 1843U89 was a potent inhibitor of ThyA but not ThyX suggesting that it should be possible to find ThyX-specific antifolates. A turnover-dependent kinetic assay, combined with the active-site titration approach of Ackermann and Potter, revealed that both M. tuberculosis enzymes had very low k(cat) values. One possible explanation for the low catalytic activity of M. tuberculosis ThyX is that its true biological substrates remain to be identified. Alternatively, this slow-growing pathogen, with low demands for TMP, may have evolved to down-regulate TS activities by altering the turnover rate of individual enzyme molecules, perhaps to preserve total protein quantities for other purposes. In many organisms, TS is often used as a part of larger complexes of macromolecules that control replication and DNA repair.Thus, the present enzymatic characterization of ThyA and ThyX from M. tuberculosis provides a framework for future development of cell-active inhibitors and the biological roles of these TS enzymes in M. tuberculosis

    Frequency, underdiagnosis, and heterogeneity of epidermal growth factor receptor exon 20 insertion mutations using real‐world genomic datasets

    No full text
    Epidermal growth factor receptor (EGFR) exon 20 insertion mutations (ex20ins) account for ≤ 12% of all EGFR-mutant nonsmall cell lung cancers. We analysed real-world datasets to determine the frequency of ex20ins variants, and the ability of polymerase chain reaction (PCR) and next-generation sequencing (NGS) to identify them. Three real-world United States NGS databases were used: GENIE, FoundationInsights, and GuardantINFORM. Mutation profiles consistent with in-frame EGFR ex20ins were summarized. GENIE, FoundationInsights, and GuardantINFORM datasets identified 180, 627, and 627 patients with EGFR ex20ins respectively. The most frequent insertion region of exon 20 was the near loop (~ 70%), followed by the far loop (~ 30%) and the helical (~ 3-6%) regions. GENIE, FoundationInsights, and GuardantINFORM datasets identified 41, 102, and 96 unique variants respectively. An analysis of variants projected that ~ 50% of EGFR ex20ins identified by NGS would have been missed by PCR-based assays. Given the breadth of EGFR ex20ins identified in the real-world US datasets, the ability of PCR to identify these mutations is limited. NGS platforms are more appropriate to identify patients likely to benefit from EGFR ex20ins-targeted therapies

    Management of infusion-related reactions (IRRs) in patients receiving amivantamab in the CHRYSALIS study.

    No full text
    BACKGROUND: Amivantamab, a fully humanized EGFR-MET bispecific antibody, has antitumor activity in diverse EGFR- and MET-driven non-small cell lung cancer (NSCLC) and a safety profile consistent with associated on-target activities. Infusion-related reaction(s) (IRR[s]) are reported commonly with amivantamab. We review IRR and subsequent management in amivantamab-treated patients. METHODS: Patients treated with the approved dose of intravenous amivantamab (1050 mg, \u3c80 \u3ekg; 1400 mg, ≥80 kg) in CHRYSALIS-an ongoing, phase 1 study in advanced EGFR-mutated NSCLC-were included in this analysis. IRR mitigations included split first dose (350 mg, day 1 [D1]; remainder, D2), reduced initial infusion rates with proactive infusion interruption, and steroid premedication before initial dose. For all doses, pre-infusion antihistamines and antipyretics were required. Steroids were optional after the initial dose. RESULTS: As of 3/30/2021, 380 patients received amivantamab. IRRs were reported in 256 (67%) patients. Signs/symptoms of IRR included chills, dyspnea, flushing, nausea, chest discomfort, and vomiting. Most of the 279 IRRs were grade 1 or 2; grade 3 and 4 IRR occurred in 7 and 1 patients, respectively. Most (90%) IRRs occurred on cycle 1, D1 (C1D1); median time-to-first-IRR onset during C1D1 was 60 min; and first-infusion IRRs did not compromise subsequent infusions. Per protocol, IRR was mitigated on C1D1 with holding of infusion (56% [214/380]), reinitiating at reduced rate (53% [202/380]), and aborting infusion (14% [53/380]). C1D2 infusions were completed in 85% (45/53) of patients who had C1D1 infusions aborted. Four patients (1% [4/380]) discontinued treatment due to IRR. In studies aimed at elucidating the underlying mechanism(s) of IRR, no pattern was observed between patients with versus without IRR. CONCLUSION: IRRs with amivantamab were predominantly low grade and limited to first infusion, and rarely occurred with subsequent dosing. Close monitoring for IRR with the initial amivantamab dose and early intervention at first IRR signs/symptoms should be part of routine amivantamab administration
    corecore