12 research outputs found

    Developing alternative shoreline armoring strategies: the living shoreline approach in North Carolina

    Get PDF
    This paper reviews the scientific data on the ecosystem services provided by shoreline habitats, the evidence for adverse impacts from bulkheading on those habitats and services, and describes alternative approaches to shoreline stabilization, which minimize adverse impacts to the shoreline ecosystem. Alternative shoreline stabilization structures that incorporate natural habitats, also known as living shorelines, have been popularized by environmental groups and state regulatory agencies in the mid-Atlantic. Recent data on living shoreline projects in North Carolina that include a stone sill demonstrate that the sills increase sedimentation rates, that after 3 years marshes behind the sills have slightly reduced biomass, and that the living shoreline projects exhibit similar rates of fishery utilization as nearby natural fringing marshes. Although the current emphasis on shoreline armoring in Puget Sound is on steeper, higher-energy shorelines, armoring of lower-energy shorelines may become an issue in the future with expansion of residential development and projected rates of sea level rise. The implementation of regulatory policy on estuarine shoreline stabilization in North Carolina and elsewhere is presented. The regulatory and public education issues experienced in North Carolina, which have made changes in estuarine shoreline stabilization policy difficult, may inform efforts to adopt a sustainable shoreline armoring strategy in Puget Sound. A necessary foundation for regulatory change in shoreline armoring policy, and public support for that change, is rigorous scientific assessment of the variety of services that natural shoreline habitats provide both to the ecosystem and to coastal communities, and evidence demonstrating that shoreline armoring can adversely impact the provision of those services

    Quantifying the benefits of wetland restoration under projected sea level rise

    Get PDF
    The capacity of vegetated coastal habitats to mitigate erosion and build elevation in response to sea-level rise (SLR) has led to growing interest in their application as Nature Based Solutions (NBS) for shoreline protection. However, a significant uncertainty in the performance of NBS is how these features will respond to future rates of SLR. In this study, we applied the Sea Level Affecting Marshes Model (SLAMM) to a fringing shoreline wetland complex that is directly adjacent to the primary runway of a regional airport in coastal North Carolina, US. The SLAMM model was run at high spatial resolution (1 m cell size) to investigate the effects of projected SLR by 2100 on the wetland communities and to estimate the potential benefits of a proposed NBS project involving the use of dredged sediment to increase wetland surface elevation. Modeling future habitat extent under three SLR scenarios (i.e., intermediate, intermediate-high, and high) with no land modification reveals a consistent pattern of salt marsh expanding into fresh marsh, salt marsh transitioning to higher elevations, and substantially larger overall extents of intertidal and subtidal habitats within the project footprint at relatively high rates of SLR. Simulations that include the NBS indicate changes in the composition of wetland types over time compared with the no-action scenario. Model results help to better understand the long-term behavior of fringing coastal wetlands and the efficacy of their use as part of coastal resilience strategies

    Living on the Edge: Increasing Patch Size Enhances the Resilience and Community Development of a Restored Salt Marsh

    Get PDF
    Foundation species regulate communities by reducing environmental stress and providing habitat for other species. Successful restoration of biogenic habitats often depends on restoring foundation species at appropriate spatial scales within a suitable range of environmental conditions. An improved understanding of the relationship between restoration scale and environmental conditions has the potential to improve restoration outcomes for many biogenic habitats. Here, we identified and tested whether inundation/exposure stress and spatial scale (patch size) can interactively determine (1) survival and growth of a foundation species, Spartina alterniflora and (2) recruitment of supported fauna. We planted S. alterniflora and artificial mimics in large and small patches at elevations above and below local mean sea level (LMSL) and monitored plant survivorship and production, as well as faunal recruitment. In the first growing season, S. alterniflora plant survivorship and stem densities were greater above LMSL than below LMSL regardless of patch size, while stem height was greatest in small patches below LMSL. By the third growing season, S. alterniflora patch expansion was greater above LMSL than below LMSL, while stem densities were higher in large patches than small patches, regardless of location relative to LMSL. Unlike S. alterniflora, which was more productive above LMSL, sessile marine biota recruitment to mimic plants was higher in patches below LMSL than above LMSL. Our results highlight an ecological tradeoff at ~LMSL between foundation species restoration and faunal recruitment. Increasing patch size as inundation increases may offset this tradeoff and enhance resilience of restored marshes to sea-level rise

    Ecosystem-based management for military training, biodiversity, carbon storage and climate resiliency on a complex coastal land/water-scape

    Get PDF
    The Defense Coastal/Estuarine Research Program (DCERP) was a 10-year multi-investigator project funded by the Department of Defense to improve understanding of ecosystem processes and their interactions with natural and anthropogenic stressors at the Marine Corps Base Camp Lejeune (MCBCL) located in coastal North Carolina. The project was aimed at facilitating ecosystem-based management (EBM) at the MCBCL and other coastal military installations. Because of its scope, interdisciplinary character, and duration, DCERP embodied many of the opportunities and challenges associated with EBM, including the need for explicit goals, system models, long-term perspectives, systems complexity, change inevitability, consideration of humans as ecosystem components, and program adaptability and accountability. We describe key elements of this program, its contributions to coastal EBM, and its relevance as an exemplar of EBM

    Randomized clinical trial to assess the impact of the broadly neutralizing HIV-1 monoclonal antibody VRC01 on HIV-1 persistence in individuals on effective ART

    Get PDF
    Background. Broadly neutralizing monoclonal antibodies (bnMAbs) may promote clearance of HIV-1-expressing cells through antibody-dependent cell-mediated cytotoxicity. We evaluated the effect of the CD4-binding site bnMAb, VRC01, on measures of HIV-1 persistence in chronically infected individuals. Methods. A5342 was a phase 1, randomized, double-blind, placebo-controlled, parallel-arm study. Participants on effective antiretroviral therapy (ART) were randomized to receive 2 infusions of VRC01 (40 mg/kg) at entry and week 3, and 2 infusions of placebo (saline) at weeks 6 and 9; or 2 infusions of placebo at entry and week 3, and 2 infusions of VRC01 at weeks 6 and 9. Results. Infusion of VRC01 was safe and well tolerated. The median fold-change in the cell-associated HIV-1 RNA/DNA ratio from baseline to week 6 was 1.12 and 0.83 for the VRC01 and placebo arms, respectively, with no significant difference between arms (P = .16). There were no significant differences in the proportions with residual plasma viremia ≥1 copies/mL or in phorbol 12-myristate 13-acetate/ionomycin-induced virus production from CD4+ T cells between arms (both P > .05). Conclusions. In individuals with chronic HIV-1 infection on ART, VRC01 infusions were safe and well tolerated but did not affect plasma viremia, cellular HIV-1 RNA/DNA levels, or stimulated virus production from CD4+ T cells

    Easing Existential Distress in Pediatric Cancer Care

    No full text
    Children with serious illnesses may have special needs that are not strictly clinical in nature and that are not always easily discerned. The capacity to detect and respond to this type of need becomes an increasingly important focus in palliative care. Spiritual care falls within this sphere of interest, for both the child with an illness and their family. In the care of children with advanced cancer and other life-threatening illnesses, spiritual care providers partner with families as they navigate a life-threatening illness, offering empathy, spiritual companionship, and guidance in balancing personal beliefs, values, and medical decision making. This chapter will explore the history and study of spiritual care of children with life-threatening illnesses and their families and present practical approaches for spiritual screening and intervention, as well as mechanisms for enhancing the infrastructure
    corecore