965 research outputs found
High velocity clouds in the Galactic All Sky Survey I. Catalogue
We present a catalogue of high-velocity clouds (HVCs) from the Galactic All
Sky Survey (GASS) of southern-sky neutral hydrogen, which has 57 mK sensitivity
and 1 km/s velocity resolution and was obtained with the Parkes Telescope. Our
catalogue has been derived from the stray-radiation corrected second release of
GASS. We describe the data and our method of identifying HVCs and analyse the
overall properties of the GASS population. We catalogue a total of 1693 HVCs at
declinations < 0 deg, including 1111 positive velocity HVCs and 582 negative
velocity HVCs. Our catalogue also includes 295 anomalous velocity clouds
(AVCs). The cloud line-widths of our HVC population have a median FWHM of ~19
km/s, which is lower than found in previous surveys. The completeness of our
catalogue is above 95% based on comparison with the HIPASS catalogue of HVCs,
upon which we improve with an order of magnitude in spectral resolution. We
find 758 new HVCs and AVCs with no HIPASS counterpart. The GASS catalogue will
shed an unprecedented light on the distribution and kinematic structure of
southern-sky HVCs, as well as delve further into the cloud populations that
make up the anomalous velocity gas of the Milky Way.Comment: 21 pages, 14 figures, accepted for publication in ApJ
Nephrogenic systemic fibrosis associated with stromal and vascular calcification, report of two cases
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75035/1/j.1600-0560.2008.01205.x.pd
Wood dynamics in headwater streams of the Colorado Rocky Mountains
Peer reviewedPublisher PD
Controls of Initial Wood Decomposition on and in Forest Soils Using Standard Material
Forest ecosystems sequester approximately half of the worldâs organic carbon (C), most of it in the soil. The amount of soil C stored depends on the input and decomposition rate of soil organic matter (OM), which is controlled by the abundance and composition of the microbial and invertebrate communities, soil physico-chemical properties, and (micro)-climatic conditions. Although many studies have assessed how these site-specific climatic and soil properties affect the decomposition of fresh OM, differences in the type and quality of the OM substrate used, make it difficult to compare and extrapolate results across larger scales. Here, we used standard wood stakes made from aspen (Populus tremuloides Michx.) and loblolly pine (Pinus taeda L.) to explore how climate and abiotic soil properties affect wood decomposition across 44 unharvested forest stands located across the northern hemisphere. Stakes were placed in three locations: (i) on top of the surface organic horizons (surface), (ii) at the interface between the surface organic horizons and mineral soil (interface), and (iii) into the mineral soil (mineral). Decomposition rates of both wood species was greatest for mineral stakes and lowest for stakes placed on the surface organic horizons, but aspen stakes decomposed faster than pine stakes. Our models explained 44 and 36% of the total variation in decomposition for aspen surface and interface stakes, but only 0.1% (surface), 12% (interface), 7% (mineral) for pine, and 7% for mineral aspen stakes. Generally, air temperature was positively, precipitation negatively related to wood stake decomposition. Climatic variables were stronger predictors of decomposition than soil properties (surface C:nitrogen ratio, mineral C concentration, and pH), regardless of stake location or wood species. However, climate-only models failed in explaining wood decomposition, pointing toward the importance of including local-site properties when predicting wood decomposition. The difficulties we had in explaining the variability in wood decomposition, especially for pine and mineral soil stakes, highlight the need to continue assessing drivers of decomposition across large global scales to better understand and estimate surface and belowground C cycling, and understand the drivers and mechanisms that affect C pools, CO2 emissions, and nutrient cycles
- âŠ