388 research outputs found

    The Black Hole Binary Nova Scorpii 1994 (GRO J1655-40): An improved chemical analysis

    Full text link
    The chemical analysis of secondary stars of low mass X-ray binaries provides an opportunity to study the formation processes of compact objects, either black holes or neutron stars. Following the discovery of overabundances of α\alpha-elements in the HIRES/Keck spectrum of the secondary star of Nova Scorpii 1994 (Israelian et al. 1999), we obtained UVES/VLT high-resolution spectroscopy with the aim of performing a detailed abundance analysis of this secondary star. Using a χ2\chi2-minimization procedure and a grid of synthetic spectra, we derive the stellar parameters and atmospheric abundances of O, Mg, Al, Ca, Ti, Fe and Ni, using a new UVES spectrum and the HIRES spectrum.The abundances of Al, Ca, Ti, Fe and Ni seem to be consistent with solar values, whereas Na, and especially O, Mg, Si and S are significantly enhanced in comparison with Galactic trends of these elements. A comparison with spherically and non-spherically symmetric supernova explosion models may provide stringent constraints to the model parameters as mass-cut and the explosion energy, in particular from the relative abundances of Si, S, Ca, Ti, Fe and Ni. Most probably the black hole in this system formed in a hypernova explosion of a 30--35 \Msun progenitor star with a mass-cut in the range 2--3.5 \Msun. However, these models produce abundances of Al and Na almost ten times higher than the observed values.Comment: New Accepted version for publication in Astronomy and Astrophysics Table 2: Correcte

    A model for luminescence of localized state ensemble

    Full text link
    A distribution function for localized carriers, f(E,T)=1e(EEa)/kBT+τtr/τrf(E,T)=\frac{1}{e^{(E-E_a)/k_BT}+\tau_{tr}/\tau_r}, is proposed by solving a rate equation, in which, electrical carriers' generation, thermal escape, recapture and radiative recombination are taken into account. Based on this distribution function, a model is developed for luminescence from localized state ensemble with a Gaussian-type density of states. The model reproduces quantitatively all the anomalous temperature behaviors of localized state luminescence. It reduces to the well-known band-tail and luminescence quenching models under certain approximations.Comment: 14 pages, 4 figure

    Effect of seminal plasma on hipoosmotic swelling test in fresh alpaca spermatozoa

    Get PDF
    A study was designed with the objective of evaluating the effect of seminal plasma on the response to the hypoosmotic swelling test (HOST) in alpaca spermatozoa, for which three experimental groups were organized as follows: Group 1(n=15) plasma free sperm seminal (obtained from the vas deferens, aspirated in PBS), Group 2(n=15) free seminal plasma sperm reconstituted with seminal plasma (obtained from the vas deferens, aspirated in PBS, mixed in 50/50% with seminal plasma) and Group 3(n=15) whole semen (obtained by artificial vagina), The samples were incubated in a hypoosmotic solution adjusted to 100mOsmol (sodium citrate+fructose+2H2Ocsp 100mL). 0.1mL of semen+0.9mL of hypoosmotic solution was mixed, incubated for 30minutes in a water bath at 37°C and the reaction was stopped with 0.1mL of 4% formaldehyde. A count of at least 200 spermatozoa was performed per sample, using an optical microscope with immersion objective (100X), the vitality was evaluated by supravital eosin staining (0.7%)-nigrosin(1%), the results indicate that it does not exist a detrimental effect of the seminal plasma on the endosmotic response, being, on the contrary, superior in the whole semen; the vitality of the spermatozoa with and without seminal plasma is similar, however it decreases when it is reconstituted with seminal plasma, possibly due to the seminal plasma of another animal; there is no positive correlation between endosmosis and vitality, indicating that the latter would not necessarily reflect the integrity of the membrane, which is why it is recommended to perform this test routinely in alpaca semen exams

    Phenomenological approach to the critical dynamics of the QCD phase transition revisited

    Full text link
    The phenomenological dynamics of the QCD critical phenomena is revisited. Recently, Son and Stephanov claimed that the dynamical universality class of the QCD phase transition belongs to model H. In their discussion, they employed a time-dependent Ginzburg-Landau equation for the net baryon number density, which is a conserved quantity. We derive the Langevin equation for the net baryon number density, i.e., the Cahn-Hilliard equation. Furthermore, they discussed the mode coupling induced through the {\it irreversible} current. Here, we show the {\it reversible} coupling can play a dominant role for describing the QCD critical dynamics and that the dynamical universality class does not necessarily belong to model H.Comment: 13 pages, the Curie principle is discussed in S.2, to appear in J.Phys.

    Thermodynamic basis of the concept of "recombination resistances"

    Full text link
    The concept of "recombination resistance" introduced by Shockley and Read (Phys. Rev. 87, 835 (1952)) is discussed within the framework of the thermodynamics of irreversible processes ruled by the principle of the minimum rate of entropy production. It is shown that the affinities of recombination processes represent "voltages" in a thermodynamic Ohm-like law where the net rates of recombinations represent the "currents". The quantities thus found allow for the definition of the "dissipated power" which is to be related to the rate of entropy production of the recombination processes dealt with.Comment: Submitted to Phys. Rev.

    Active nematics on a substrate: giant number fluctuations and long-time tails

    Get PDF
    We construct the equations of motion for the coupled dynamics of order parameter and concentration for the nematic phase of driven particles on a solid surface, and show that they imply (i) giant number fluctuations, with a standard deviation proportional to the mean and (ii) long-time tails td/2\sim t^{-d/2} in the autocorrelation of the particle velocities in dd dimensions despite the absence of a hydrodynamic velocity field. Our predictions can be tested in experiments on aggregates of amoeboid cells as well as on layers of agitated granular matter.Comment: Submitted to Europhys Lett 26 Aug 200

    The theory of manipulations of pure state asymmetry: basic tools and equivalence classes of states under symmetric operations

    Full text link
    If a system undergoes symmetric dynamics, then the final state of the system can only break the symmetry in ways in which it was broken by the initial state, and its measure of asymmetry can be no greater than that of the initial state. It follows that for the purpose of understanding the consequences of symmetries of dynamics, in particular, complicated and open-system dynamics, it is useful to introduce the notion of a state's asymmetry properties, which includes the type and measure of its asymmetry. We demonstrate and exploit the fact that the asymmetry properties of a state can also be understood in terms of information-theoretic concepts, for instance in terms of the state's ability to encode information about an element of the symmetry group. We show that the asymmetry properties of a pure state psi relative to the symmetry group G are completely specified by the characteristic function of the state, defined as chi_psi(g)= where g\in G and U is the unitary representation of interest. For a symmetry described by a compact Lie group G, we show that two pure states can be reversibly interconverted one to the other by symmetric operations if and only if their characteristic functions are equal up to a 1-dimensional representation of the group. Characteristic functions also allow us to easily identify the conditions for one pure state to be converted to another by symmetric operations (in general irreversibly) for the various paradigms of single-copy transformations: deterministic, state-to-ensemble, stochastic and catalyzed.Comment: Published version. Several new results added. 31 Pages, 3 Figure

    Radioactive decays at limits of nuclear stability

    Full text link
    The last decades brought an impressive progress in synthesizing and studying properties of nuclides located very far from the beta stability line. Among the most fundamental properties of such exotic nuclides, usually established first, is the half-life, possible radioactive decay modes, and their relative probabilities. When approaching limits of nuclear stability, new decay modes set in. First, beta decays become accompanied by emission of nucleons from highly excited states of daughter nuclei. Second, when the nucleon separation energy becomes negative, nucleons start to be emitted from the ground state. Here, we present a review of the decay modes occurring close to the limits of stability. The experimental methods used to produce, identify and detect new species and their radiation are discussed. The current theoretical understanding of these decay processes is overviewed. The theoretical description of the most recently discovered and most complex radioactive process - the two-proton radioactivity - is discussed in more detail.Comment: Review, 68 pages, 39 figure
    corecore