25 research outputs found

    Teaching Students about Two-Dimensional Heat Transfer Effects in Buildings, Building Components, Equipment and Appliances using THERM 2.0,

    Get PDF
    Abstract THERM 2.0 is a state-of-the-art software program, available for free, that uses the finite-element method to model steady-state, two-dimensional heat-transfer effects. It is being used internationally in graduate and undergraduate laboratories and classes as an interactive educational tool to help students gain a better understanding of heat transfer. THERM offers students a powerful simulation engine combined with a simple, interactive interface and graphic results. Although it was developed to model thermal properties of building components such as windows, walls, doors, roofs, and foundations, it is useful for modeling thermal bridges in many other contexts, such as the design of equipment. These capabilities make THERM a useful teaching tool in classes on: heating, ventilation, and air-conditioning (HVAC); energy conservation; building design; and other subjects where heat-transfer theory and applications are important. THERM's state-of-the-art interface and graphic presentation allow students to see heattransfer paths and to learn how changes in materials affect heat transfer. THERM is an excellent tool for helping students understand the practical application of heat-transfer theory

    Experimental validation and model development for thermal transmittances of porous window screens and horizontal louvred blind systems

    No full text
    Virtually every home in the US has some form of shades, blinds, drapes, or other window attachment, but few have been designed for energy savings. In order to provide a common basis of comparison for thermal performance it is important to have validated simulation tools. This paper outlines a review and validation of the ISO 15099 centre-of-glass thermal transmittance correlations for naturally ventilated cavities through measurement and detailed simulations. The focus is on the impacts of room-side ventilated cavities, such as those found with solar screens and horizontal louvred blinds. The thermal transmittance of these systems is measured experimentally, simulated using computational fluid dynamics analysis, and simulated utilizing simplified correlations from ISO 15099. Correlation coefficients are proposed for the ISO 15099 algorithm that reduces the mean error between measured and simulated heat flux for typical solar screens from 16% to 3.5% and from 13% to 1% for horizontal blinds
    corecore