26 research outputs found

    Yap1-Driven Intestinal Repair Is Controlled by Group 3 Innate Lymphoid Cells

    Get PDF
    Intestinal repair is driven by epithelial stem cells, but how these stem cells are instructed to initiate repair was unknown. Here, Romera-Hernández et al. report that epithelial proliferation after damage is independent of the stem cell-protective signal IL-22 but requires ILC3-dependent amplification of regenerative YAP1 signaling in stem cells.Tissue repair requires temporal control of progenitor cell proliferation and differentiation to replenish damaged cells. In response to acute insult, group 3 innate lymphoid cells (ILC3s) regulate intestinal stem cell maintenance and subsequent tissue repair. ILC3-derived IL-22 is important for stem cell protection, but the mechanisms of ILC3-driven tissue regeneration remain incompletely defined. Here we report that ILC3-driven epithelial proliferation and tissue regeneration are independent of IL-22. In contrast, ILC3s amplify the magnitude of Hippo-Yap1 signaling in intestinal crypt cells, ensuring adequate initiation of tissue repair and preventing excessive pathology. Mechanistically, ILC3-driven tissue repair is Stat3 indepe

    Decreased IL7Rα and TdT expression underlie the skewed immunoglobulin repertoire of human B-cell precursors from fetal origin

    Get PDF
    Newborns are unable to mount antibody responses towards certain antigens. This has been related to the restricted repertoire of immunoglobulin (Ig) genes of their B cells. The mechanisms underlying the restricted fetal Ig gene repertoire are currently unresolved. We here addressed this with detailed molecular and cellular analysis of human precursor-B cells from fetal liver, fetal bone marrow (BM), and pediatric BM. In the absence of selection processes, fetal B-cell progenitors more frequently used proximal V, D and J genes in complete IGH gene rearrangements, despite normal Ig locus contraction. Fewer N-nucleotides were added in IGH gene rearrangements in the context of low TdT and XRCC4 expression. Moreover, fetal progenitor-B cells expressed lower levels of IL7Rα than their pediatric counterparts. Analysis of progenitor-B cells from IL7Rα-deficient patients revealed that TdT expression and N-nucleotides additions in Dh-Jh junctions were dependent on functional IL7Rα. Thus, IL7Rα affects TdT expression, and decreased expression of this receptor underlies at least in part the skewed Ig repertoire formation in fetal B-cell precursors. These new insights provide a better understanding of the formation of adaptive immunity in the developing fetus

    Characterization of Endothelial Cells Associated with Hematopoietic Niche Formation in Humans Identifies IL-33 As an Anabolic Factor

    Get PDF
    Bone marrow formation requires an orchestrated interplay between osteogenesis, angiogenesis, and hematopoiesis that is thought to be mediated by endothelial cells. The nature of the endothelial cells and the molecular mechanisms underlying these events remain unclear in humans. Here, we identify a subset of endoglin-expressing endothelial cells enriched in human bone marrow during fetal ontogeny and upon regeneration after chemotherapeutic injury. Comprehensive transcriptional characterization by massive parallel RNA sequencing of these cells reveals a phenotypic and molecular similarity to murine type H endothelium and activation of angiocrine factors implicated in hematopoiesis, osteogenesis, and angiogenesis. Interleukin-33 (IL-33) was significantly overexpressed in these endothelial cells and promoted the expansion of distinct subsets of h

    Functional differences between human NKp44- and NKp44+ RORC+ innate lymphoid cells

    Get PDF
    Human RORC+ lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC+ innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC+ innate lymphoid cells are enriched for secretion of IL-17a or IL-22. Both subsets have an activated phenotype and can be distinguished based on the presence or absence of the natural cytotoxicity receptor NKp44. NKp44+ IL-22 producing cells are present in tonsils while NKp44- IL-17a producing cells are present in fetal developing lymph nodes. Development of human intestinal NKp44+ ILC is a programmed event that is independent of bacterial colonization and these cells colonize the fetal intestine during the first trimester. In the adult intestine, NKp44+ ILC are the main ILC subset producing IL-22. NKp44- ILC remain present throughout adulthood in peripheral non-inflamed lymph nodes as resting, non-cytokine producing cells. However, upon stimulation lymph node ILC can swiftly initiate cytokine transcription suggesting that secondary human lymphoid organs may function as a reservoir for innate lymphoid cells capable of participating in inflammatory responses

    Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL

    Get PDF
    Microenvironment and activation signals likely imprint heterogeneity in the lymphatic endothelial cell (LEC) population. Particularly LECs of secondary lymphoid organs are exposed to different cell types and immune stimuli. However, our understanding of the nature of LEC activation signals and their cell source within the secondary lymphoid organ in the steady state remains incomplete. Here we show that integrin alpha 2b (ITGA2b), known to be carried by platelets, megakaryocytes and hematopoietic progenitors, is expressed by a lymph node subset of LECs, residing in medullary, cortical and subcapsular sinuses. In the subcapsular sinus, the floor but not the ceiling layer expresses the integrin, being excluded from ACKR4+LECs but overlapping with MAdCAM-1 expression. ITGA2b expression increases in response to immunization, raising the possibility that heterogeneous ITGA2b levels reflect variation in exposure to activation signals. We show that alterations of the level of receptor activator of NF-κB ligand (RANKL), by overexpression, neutralization or deletion from stromal marginal reticular cells, affected the proportion of ITGA2b+LECs. Lymph node LECs but not peripheral LECs express RANK. In addition, we found that lymphotoxin-β receptor signaling likewise regulated the proportion of ITGA2b+LECs. These findings demonstrate that stromal reticular cells activate LECs via RANKL and support the action of hematopoietic cell-derived lymphotoxin

    Innate protection from graft-versus-host disease

    No full text
    In this issue of Blood, Hazenberg and Spits provide a detailed overview of human innate lymphoid cell (ILC) subsets and their development and distribution throughout the human body, discussing these cells in the context of human disease. In the same issue, Munneke et al for the first time link ILCs to human hematopoietic malignancies by identifying a clear correlation between the presence of activated ILCs after induction chemotherapy and the absence of acute graft-versus-host disease (GVHD) development following subsequent hematopoietic stem cell transplantation (HSCT).1,

    Application of tissue engineering to the immune system: Development of artificial lymph nodes

    Get PDF
    The goal of tissue engineering and regenerative medicine is to develop synthetic versions of human organs for transplantation, in vitro toxicology testing and to understand basic mechanisms of organ function. A variety of different approaches have been utilized to repli- cate the microenvironments found in lymph nodes including the use of a variety of different bio-materials, culture systems, and the application of different cell types to replicate stro- mal networks found in vivo. Although no system engineered so far can fully replicate lymph node function, progress has been made in the development of microenvironments that can promote the initiation of protective immune responses. In this review we will explore the different approaches utilized to recreate lymph node microenvironments and the technical challenges required to recreate a fully functional immune system in vitro

    A stromal cell niche for human and mouse type 3 innate lymphoid cells

    No full text
    Adaptive immunity critically depends on the functional compartmentalization of secondary lymphoid organs. Mesenchymal stromal cells create and maintain specialized niches that support survival, activation, and expansion of T and B cells, and integrated analysis of lymphocytes and their niche has been instrumental in understanding adaptive immunity. Lymphoid organs are also home to type 3 innate lymphoid cells (ILC3), innate effector cells essential for barrier immunity. However, a specialized stromal niche for ILC3 has not been identified. A novel lineage-tracing approach now identifies a subset of murine fetal lymphoid tissue organizer cells that gives rise exclusively to adult marginal reticular cells. Moreover, both cell types are conserved from mice to humans and colocalize with ILC3 in secondary lymphoid tissues throughout life. In sum, we provide evidence that fetal stromal organizers give rise to adult marginal reticular cells and form a dedicated stromal niche for innate ILC3 in adaptive lymphoid organs

    Dicer1 deletion in myeloid-committed progenitors causes neutrophil dysplasia and blocks macrophage/dendritic cell development in mice

    No full text
    MicroRNAs (miRNAs) have the potential to regulate cellular differentiation programs; however, miRNA deficiency in primary hematopoietic stem cells (HSCs) results in HSC depletion in mice, leaving the question of whether miRNAs play a role in early-lineage decisions unanswered. To address this issue, we deleted Dicer1, which encodes an essential RNase III enzyme for miRNA biogenesis, in murine CCAAT/enhancer-binding protein α (C/EBPA)-positive myeloid-committed progenitors in vivo. In contrast to the results in HSCs, we found that miRNA depletion affected neither the number of myeloid progenitors nor the percentage of C/EBPA-positive progenitor cells. Analysis of gene-expression profiles from wild-type and Dicer1-deficient granulocyte-macrophage progenitors (GMPs) revealed that 20 miRNA families were active in GMPs. Of the derepressed miRNA targets in Dicer1-null GMPs, 27% are normally exclusively expressed in HSCs or are specific for multipotent progenitors and erythropoiesis, indicating an altered geneexpression landscape. Dicer1-deficient GMPs were defective in myeloid development in vitro and exhibited an increased replating capacity, indicating the regained self-renewal potential of these cells. In mice, Dicer1 deletion blocked monocytic differentiation, depleted macrophages, and caused myeloid dysplasia with morphologic features of Pelger-Huë t anomaly. These results provide evidence for a miRNA-controlled switch for a cellular program of self-renewal and expansion toward myeloid differentiation in GMPs
    corecore