317 research outputs found

    Finding a sustainable cultural identity as a science teacher educator: A Mozambican perspective

    Get PDF
    Mozambican schools are not helping students to see themselves as culturally rich beings because local cultural values, traditions, knowledge and beliefs have never been included in the curriculum. More than 30 years after independence from 500 years of Portuguese colonial rule, Mozambican science teachers continue to serve as agents of assimilation of students into a Western modern worldview that is indifferent to their local cultural identities and aspirations. As a science teacher educator preparing new teachers for Mozambican schools Cupane (first author) saw his cultural identity to be part of the problem and part of the solution. He designed a critical auto-ethnographic inquiry and explored (and transformed) his cultural identity as he addressed the key research question: How can school science serve better the cultural development of local school communities in Mozambique? A key outcome of this research is Cupane’s multi-cultural identity as a Mozambican, an indigenous (Changana) person, a world citizen, and a science teacher educator. Generating this understanding has fuelled his vision of future science education for Mozambique for which he has articulated a culture-sensitive philosophy of physics teacher education

    Investigating protein structure and dynamics through wide-angle X-ray solution scattering

    Get PDF
    Wide-angle X-ray scattering (WAXS) is a powerful tool that can be used to gain information on the structure and dynamics of proteins and other biomolecules in solution. Improved methods for the calculation of WAXS patterns from available or putative protein models allow to better exploit the structural information contained in the experimental data. These methods, together with recent applications of static and time-resolved WAXS, are briefly reviewed

    Anharmonic activations in proteins and peptide model systems and their connection with supercooled water thermodynamics

    Get PDF
    Proteins, the nano-machines of living systems, are highly dynamic molecules. The time-scale of functionally relevant motions spans over a very broad range, from femtoseconds to several seconds. In particular, the pico- to nanoseconds region is characterized by side-chain and backbone anharmonic fluctuations that are responsible for many biological tasks like ligand binding, substrate recognition and enzymatic activity. Neutron scattering on hydrated protein powders reveals two main activations of anharmonic dynamics, characterized by different onset temperature and amplitude. Here we review our work on synthetic polypeptides, native proteins, and single amino acids to identify the physical origin of the two onsets—one involving water-independent local dynamics of methyl groups and, to a minor extent, of aromatic side-chains, and the other one, known as “protein dynamical transition”, concerning large scale functional protein fluctuations, most likely induced by a crossover in the structure and dynamics of hydration water connected with the second critical point hypothesis

    Dynamics and protein–solvent interactions of hemoglobin in T and R quaternary conformation

    Get PDF
    In this work we report the thermal behaviour of the amide I′ band of carbonmonoxy and deoxy hemoglobin in 65% v/v glycerolD8/D2O solutions and in the temperature interval 10–295 K. Following recent suggestions in the literature, we analyze the amide I′ band in terms of two components, one at about 1630 cm−1and the other at about 1650 cm−1, that are assigned to solvent‒exposed and buried α‒helical regions, respectively.For deoxy hemoglobin (in T quaternary structure) both components are narrower with respect to carbonmonoxy hemoglobin (in R quaternary structure), while the peak frequency blue shift observed, upon increasing temperature, for the component at about 1630 cm−1is smaller. The reported data provide evidence of the dependence of hemoglobin dynamic properties upon the protein quaternary structure and suggest a more compact α‒helical structure of hemoglobin in T conformation, with reduced population of low‒frequency modes involving the solvent and protein

    Physical Origin of Anharmonic Dynamics in Proteins: New Insights From Resolution-Dependent Neutron Scattering on Homomeric Polypeptides

    Get PDF
    Neutron scattering reveals a complex dynamics in polypeptide chains, with two main onsets of anharmonicity whose physical origin and biological role are still debated. In this study the dynamics of strategically selected homomeric polypeptides is investigated with elastic neutron scattering using different energy resolutions and compared with that of a real protein. Our data spotlight the dependence of anharmonic transition temperatures and fluctuation amplitudes on energy resolution, which we quantitatively explain in terms of a two-site model for the protein-hydration water energy landscape. Experimental data strongly suggest that the protein dynamical transition is not a mere resolution effect but is due to a real physical effect. Activation barriers and free energy values obtained for the protein dynamical transition allow us to make a connection with the two-well interaction potential of supercooledconfined water proposed to explain a low-density -- high-density liquid-liquid transition

    Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water

    Get PDF
    In this work, we compare experimental data on myoglobin hydrated powders from elastic neutron scattering, broadband dielectric spectroscopy, and differential scanning calorimetry. Our aim is to obtain new insights on the connection between the protein dynamical transition, a fundamental phenomenon observed in proteins whose physical origin is highly debated, and the liquid-liquid phase transition (LLPT) possibly occurring in protein hydration water and related to the existence of a low temperature critical point in supercooled water. Our results provide a consistent thermodynamic/dynamic description which gives experimental support to the LLPT hypothesis and further reveals how fundamental properties of water and proteins are tightly related

    Dynamics of supercooled confined water measured by deep inelastic neutron scattering

    Get PDF
    In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter ~ 20 Ã) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquidâliquid transition of supercooled confined water) on a âwetâ sample with hydration h ~ 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually âdryâ sample at h ~ 7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquidâliquid transition hypothesis
    corecore