14 research outputs found

    SoK: Safer Digital-Safety Research Involving At-Risk Users

    Full text link
    Research involving at-risk users -- that is, users who are more likely to experience a digital attack or to be disproportionately affected when harm from such an attack occurs -- can pose significant safety challenges to both users and researchers. Nevertheless, pursuing research in computer security and privacy is crucial to understanding how to meet the digital-safety needs of at-risk users and to design safer technology for all. To standardize and bolster safer research involving such users, we offer an analysis of 196 academic works to elicit 14 research risks and 36 safety practices used by a growing community of researchers. We pair this inconsistent set of reported safety practices with oral histories from 12 domain experts to contribute scaffolded and consolidated pragmatic guidance that researchers can use to plan, execute, and share safer digital-safety research involving at-risk users. We conclude by suggesting areas for future research regarding the reporting, study, and funding of at-risk user researchComment: 13 pages, 3 table

    Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer.

    Get PDF
    Circulating tumour DNA analysis can be used to track tumour burden and analyse cancer genomes non-invasively but the extent to which it represents metastatic heterogeneity is unknown. Here we follow a patient with metastatic ER-positive and HER2-positive breast cancer receiving two lines of targeted therapy over 3 years. We characterize genomic architecture and infer clonal evolution in eight tumour biopsies and nine plasma samples collected over 1,193 days of clinical follow-up using exome and targeted amplicon sequencing. Mutation levels in the plasma samples reflect the clonal hierarchy inferred from sequencing of tumour biopsies. Serial changes in circulating levels of sub-clonal private mutations correlate with different treatment responses between metastatic sites. This comparison of biopsy and plasma samples in a single patient with metastatic breast cancer shows that circulating tumour DNA can allow real-time sampling of multifocal clonal evolution.We thank the Human Research Tissue Bank at Addenbrooke’s Hospital which is supported by the NIHR Cambridge Biomedical Research Centre. We acknowledge the support of Cancer Research UK, the University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre. Dr. Dawson was supported by an Australian National Breast Cancer Foundation and Victorian Cancer Agency Early Career Fellowship. Dr. Murtaza was supported by Science Foundation Arizona’s Bisgrove Scholars Early Tenure Track award.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms976

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Feminist Legal Geographies

    No full text
    Since the 1980s, legal geographical research as a trans-disciplinary project has drawn attention to the binding connections between law and space. Legal geography can be defined as a stream of scholarship that makes the interconnections between law and spatiality, and especially their reciprocal construction into core objects of inquiry. This theme issue aims to redress the lack of attention given to feminist scholarship in the geographies of law project, and to identify and carve out a new and distinctive 'stream' within it

    The Egg Tree

    No full text
    https://digitalcommons.hamilton.edu/cardcatalog/1051/thumbnail.jp
    corecore