409 research outputs found

    The effect of three practice conditions on the consistency of chronic dysarthric speech

    Get PDF
    This study investigated whether it is possible for people with chronic dysarthria to adjust their articulation in three practice conditions. A speaker dependent, speech recognition system was used to compare participants' practice attempts with a model of a word made from previous recordings to give a recognition score. This score was used to indicate changes in production of practice words with different conditions. The three conditions were reading of written target words, visual feedback, and an auditory model followed by visual feedback. For eight participants with dysarthria, the ability to alter speech production was shown, together with a differential effect of the three conditions. Copying an auditory target gave significantly better recognition scores than just repeating the word. Visual feedback was no more effective than repetition alone. For four control participants, visual feedback did produce significantly better recognition scores than just repetition of written words, and the presence of an auditory model was Significantly more effective than visual feedback. Possible reasons for differences between conditions are discussed

    Using qualitative research methods to inform user centred design of an innovative assistive technology device

    Get PDF
    The SPECS project aims to develop a speech-driven device that will allow the home environment to be controlled (for example turning on or off the lights or television). The device developed will be targeted at older people and people with disabilities and will be sensitive to disordered speech. Current environmental control systems (ECS) work using either a switch interface or speech recognition software that does not comprehend disordered speech well. Switch-interface systems are often slow and complicated to use and the uptake of the available speech recognition system has been poor. A significant proportion of people requiring electronic assistive technology (EAT) have dysarthria, a motor speech disorder, associated with their physical disability. Speech control of EAT is seen as desirable for such people but machine recognition of dysarthric speech is a difficult problem due to the variability of their articulatory output. Other work on large vocabulary adaptive speech recognition systems and speaker dependent recognisers has not provided a solution for severely dysarthric speech. Building on the work of the STARDUST project our goal is to develop and implement speech recognition as a viable control interface for people with severe physical disability and severe dysarthria. The SPECS project is funded by the Health Technology Devices Programme of the Department of Health

    Phenyl acrylate is a versatile monomer for the synthesis of acrylic diblock copolymer nano-objects via polymerization-induced self-assembly

    Get PDF
    Over the last decade or so, polymerization-induced self-assembly (PISA) has become widely recognized as a versatile technique for the rational synthesis of diblock copolymer nano-objects in the form of concentrated dispersions. However, there are relatively few examples of acrylic-based PISA formulations in the literature, partly because such copolymers typically possess relatively low glass transition temperatures (Tg) that preclude morphological characterization by transmission electron microscopy. To address this problem, we have selected phenyl acrylate (PhA) as a model monomer to generate the solvophobic block in three PISA formulations using reversible addition–fragmentation chain transfer (RAFT) polymerization. Thus, a poly(dimethyl acrylamide)-based chain transfer agent (CTA) is chain-extended using PhA via RAFT aqueous emulsion polymerization to produce a series of well-defined sterically-stabilized spheres whose mean diameter can be readily adjusted from 38 nm to 188 nm by varying the target degree of polymerization (DP). In contrast, RAFT alcoholic dispersion polymerization of PhA using a poly(acrylic acid) CTA leads to an evolution of copolymer morphology from spheres to worms to lamellae and finally vesicles as the target DP of the structure-directing PPhA block is increased. Similarly, RAFT dispersion polymerization of PhA in n-heptane also produces spheres, worms or vesicles depending on the target DP of the PPhA block. 1H NMR studies indicate that >98% PhA conversion is achieved in all cases, while GPC analysis indicates high blocking efficiencies. However, relatively broad molecular weight distributions are observed (Mw/Mn = 1.37 to 2.48), which suggests extensive chain transfer to polymer in such PISA syntheses, particularly in the case of the RAFT aqueous emulsion polymerization formulation. Nevertheless, the relatively high Tg of PPhA (50 °C) enables characterization of the various copolymer morphologies using conventional TEM

    Stimulus-responsive block copolymer nano-objects and hydrogels via dynamic covalent chemistry

    Get PDF
    Herein we demonstrate that dynamic covalent chemistry can be used to induce reversible morphological transitions in block copolymer nano-objects and hydrogels. Poly(glycerol monomethacrylate)–poly(2- hydroxypropyl methacrylate) (PGMA–PHPMA) diblock copolymer nano-objects (vesicles or worms) were prepared via polymerization-induced self-assembly. Addition of 4-carboxyphenylboronic acid (CPBA) leads to the formation of phenylboronate ester bonds with the 1,2-diol pendent groups on the hydrophilic PGMA stabilizer chains; such binding causes a subtle reduction in the packing parameter, which in turn induces either vesicle-to-worm or worm-to-sphere transitions. Moreover, CPBA binding is pH-dependent, so reversible transitions can be achieved by switching the solution pH, with relatively high copolymer concentrations leading to associated (de)gelation. This distinguishes these new physical hydrogels from the covalently cross-linked gels prepared using dynamic covalent chemistry reported in the literature

    Analyses of Sustained Vowels in Down Syndrome (DS): A Case Study Using Spectrograms and Perturbation Data to Investigate Voice Quality in Four Adults With DS

    Get PDF
    OBJECTIVES: Automatic acoustic measures of voice quality in people with Down syndrome (DS) do not reliably reflect perceived voice qualities. This study used acoustic data and visual spectral data to investigate the relationship between perceived voice qualities and acoustic measures. STUDY DESIGN: Participants were four young adults (two males, two females; mean age 23.8 years) with DS and severe learning disabilities, at least one of whom had a hearing impairment. METHODS: Participants imitated sustained /i/, /u/, and /a/ vowels at predetermined target pitches within their vocal range. Medial portions of vowels were analyzed, using Praat, for fundamental frequency, harmonics-to-noise ratio, jitter, and shimmer. Spectrograms were used to identify the presence and the duration of subharmonics at onset and offset, and mid-vowel. The presence of diplophonia was assessed by auditory evaluation. RESULTS: Perturbation data were highest for /a/ vowels and lowest for /u/ vowels. Intermittent productions of subharmonics were evident in spectrograms, some of which coincided with perceived diplophonia. The incidence, location, duration, and intensity of subharmonics differed between the four participants. CONCLUSIONS: Although the acoustic data do not clearly indicate atypical phonation, diplophonia and subharmonics reflect nonmodal phonation. The findings suggest that these may contribute to different perceived voice qualities in the study group and that these qualities may result from intermittent involvement of supraglottal structures. Further research is required to confirm the findings in the wider DS population, and to assess the relationships between voice quality, vowel type, and physiological measures

    Synthesis of High Molecular Weight Poly(glycerol monomethacrylate) via RAFT Emulsion Polymerization of Isopropylideneglycerol Methacrylatefree

    Get PDF
    High molecular weight water-soluble polymers are widely used as flocculants or thickeners. However, synthesis of such polymers via solution polymerization invariably results in highly viscous fluids, which makes subsequent processing somewhat problematic. Alternatively, such polymers can be prepared as colloidal dispersions; in principle, this is advantageous because the particulate nature of the polymer chains ensures a much lower fluid viscosity. Herein we exemplify the latter approach by reporting the convenient one-pot synthesis of high molecular weight poly(glycerol monomethacrylate) (PGMA) via the reversible addition−fragmentation chain transfer (RAFT) aqueous emulsion polymerization of a water-immiscible protected monomer precursor, isopropylideneglycerol methacrylate (IPGMA) at 70 °C, using a water-soluble poly(glycerol monomethacrylate) (PGMA) chain transfer agent as a steric stabilizer. This formulation produces a low-viscosity aqueous dispersion of PGMA−PIPGMA diblock copolymer nanoparticles at 20% solids. Subsequent acid deprotection of the hydrophobic core-forming PIPGMA block leads to particle dissolution and affords a viscous aqueous solution comprising high molecular weight PGMA homopolymer chains with a relatively narrow molecular weight distribution. Moreover, it is shown that this latex precursor route offers an important advantage compared to the RAFT aqueous solution polymerization of glycerol monomethacrylate since it provides a significantly faster rate of polymerization (and hence higher monomer conversion) under comparable conditions

    H2O2 Enables Convenient Removal of RAFT End-Groups from Block Copolymer Nano-Objects Prepared via Polymerization-Induced Self-Assembly in Water

    Get PDF
    RAFT-synthesized polymers are typically colored and malodorous due to the presence of the sulfur-based RAFT end-group(s). In principle, RAFT end-groups can be removed by treating molecularly dissolved copolymer chains with excess free radical initiators, amines, or oxidants. Herein we report a convenient method for the removal of RAFT end-groups from aqueous dispersions of diblock copolymer nano-objects using H2O2. This oxidant is relatively cheap, has minimal impact on the copolymer morphology, and produces benign side products that can be readily removed via dialysis. We investigate the efficiency of end-group removal for various diblock copolymer nano-objects prepared with either dithiobenzoate- or trithiocarbonate-based RAFT chain transfer agents. The advantage of using UV GPC rather than UV spectroscopy is demonstrated for assessing both the kinetics and extent of end-group removal

    Smart Focal Plane Technologies for VLT Instruments

    Full text link
    As we move towards the era of ELTs, it is timely to think about the future role of the 8-m class telescopes. Under the OPTICON programme, novel technologies have been developed that are intended for use in multi-object and integral-field spectrographs. To date, these have been targeted at instrument concepts for the European ELT, but there are also significant possibilities for their inclusion in new VLT instruments, ensuring the continued success and productivity of these unique telescopes.Comment: 5 pages, to appear in the proceedings of the ESO Workshop "Science with the VLT in the ELT era

    Oil-in-oil pickering emulsions stabilized by diblock copolymer nanoparticles

    Get PDF
    Hypothesis Diblock copolymer nanoparticles have been shown to be Pickering emulsifiers for both oil-in-water and water-in-oil emulsions. Recently, we reported the preparation of sterically-stabilized diblock copolymer spheres in a low-viscosity silicone oil (Macromolecules 53 (2020) 1785–1794). We hypothesized that such spheres could be used as a Pickering emulsifier for a range of oil-in-oil emulsions comprising droplets of a bio-sourced oil dispersed in silicone oil. Experiments Diblock copolymer spheres were prepared via reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate in silicone oil and characterized by dynamic light scattering and transmission electron microscopy. These spheres were evaluated as Pickering emulsifiers for a series of oil-in-oil Pickering emulsions. The influence of both sphere size and core-forming block composition was investigated. Findings \ud Optimization of the nanoparticle size and core-forming block composition enabled stable bio-sourced oil-in-silicone emulsions to be obtained for nine out of the ten bio-sourced oils investigated. These emulsions were characterized in terms of their mean droplet size by optical microscopy

    Giant Pickering droplets: effect of nanoparticle size and morphology on stability

    Get PDF
    The interaction between a pair of millimeter-sized nanoparticle-stabilized n-dodecane droplets was analyzed by high-speed video camera. The droplets were grown in the presence of either poly(glycerol monomethacrylate)-poly(benzyl methacrylate) (PGMA-PBzMA) diblock copolymer spheres or poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate)-poly(benzyl methacrylate) (PGMA-PHPMA-PBzMA) triblock copolymer worms prepared by polymerization-induced self-assembly (PISA). The effect of nanoparticle morphology on droplet coalescence was analyzed by comparing 22 nm spheres to highly anisotropic worms with a mean worm width of 26 nm and comparable particle contact angle. Both morphologies lowered the interfacial tension, providing direct evidence for nanoparticle adsorption at the oil-water interface. At 0.03 % w/v copolymer, at least 90 seconds was required to stabilize the n-dodecane droplets in the presence of the worms, whereas no ageing was required to produce stable droplets when using the spheres, suggesting faster diffusion of the latter to the surface of the droplets. The enhanced stability of the sphere-coated droplets is consistent with the higher capillary pressure in this system as the almost planar interfaces approach. However, the more strongly adsorbing worms ultimately also confer stability. At lower copolymer concentrations (≤ 0.01% w/v) worm adsorption promoted droplet stability, whereas the spheres were unable to stabilize droplets even after longer ageing times. The effect of mean sphere diameter on droplet stability was also assessed while maintaining an approximately constant particle contact angle. Small spheres of either 22 nm or 41 nm stabilized n-dodecane droplets, whereas larger spheres of either 60 or 91 nm were unable to prevent coalescence when the two droplets were brought into contact. These observations are consistent with the greater capillary pressure stabilizing the oil-water interfaces coated with the smaller spheres. Addition of an oil-soluble polymeric diisocyanate cross-linker to either the 60 nm or the 91 nm spheres produced highly stable colloidosomes, thus confirming adsorption of these nanoparticles
    • …
    corecore