2,473 research outputs found

    CYTOMEGALOVIRUS INFECTION BY NON-PARENTERAL TRANSMISSION

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24234/1/0000494.pd

    K-shell photoionization of ground-state Li-like boron ions [B2+^{2+}]: Experiment and Theory

    Full text link
    Absolute cross sections for the K-shell photoionization of ground-state Li-like boron [B2+^{2+}(1s2^22s 2^2S)] ions were measured by employing the ion-photon merged-beams technique at the Advanced Light Source synchrotron radiation facility. The energy ranges 197.5--200.5 eV, 201.9--202.1 eV of the [1s(2s\,2p)3^3P]2^2Po{\rm ^o} and [1s(2s\,2p)1^1P] 2^2Po{\rm ^o} resonances, respectively, were investigated using resolving powers of up to 17\,600. The energy range of the experiments was extended to about 238.2 eV yielding energies of the most prominent [1s(2\ell\,n\ell^{\prime})]2^2Po^o resonances with an absolute accuracy of the order of 130 ppm. The natural linewidths of the [1s(2s\,2p)3^3P] 2^2Po{\rm ^o} and [1s(2s\,2p)1^1P] 2^2Po{\rm ^o} resonances were measured to be 4.8±0.64.8 \pm 0.6 meV and 29.7±2.529.7 \pm 2.5 meV, respectively, which compare favourably with theoretical results of 4.40 meV and 30.53 meV determined using an intermediate coupling R-matrix method.Comment: 6 figures and 2 table

    Fundamental Properties of Stars using Asteroseismology from Kepler & CoRoT and Interferometry from the CHARA Array

    Full text link
    We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining interferometric angular diameters, Hipparcos parallaxes, asteroseismic densities, bolometric fluxes and high-resolution spectroscopy we derive a full set of near model-independent fundamental properties for the sample. We first use these properties to test asteroseismic scaling relations for the frequency of maximum power (nu_max) and the large frequency separation (Delta_nu). We find excellent agreement within the observational uncertainties, and empirically show that simple estimates of asteroseismic radii for main-sequence stars are accurate to <~4%. We furthermore find good agreement of our measured effective temperatures with spectroscopic and photometric estimates with mean deviations for stars between T_eff = 4600-6200 K of -22+/-32 K (with a scatter of 97K) and -58+/-31 K (with a scatter of 93 K), respectively. Finally we present a first comparison with evolutionary models, and find differences between observed and theoretical properties for the metal-rich main-sequence star HD173701. We conclude that the constraints presented in this study will have strong potential for testing stellar model physics, in particular when combined with detailed modelling of individual oscillation frequencies.Comment: 18 pages, 12 figures, 7 tables; accepted for publication in Ap

    Forward Global Photometric Calibration of the Dark Energy Survey

    Get PDF
    Many scientific goals for the Dark Energy Survey (DES) require calibration of optical/NIR broadband b=grizYb = grizY photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a "Forward Global Calibration Method (FGCM)" for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broad-band survey imaging itself and models of the instrument and atmosphere to estimate the spatial- and time-dependence of the passbands of individual DES survey exposures. "Standard" passbands are chosen that are typical of the passbands encountered during the survey. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude mbstdm_b^{\mathrm{std}} in the standard system. This "chromatic correction" to the standard system is necessary to achieve sub-percent calibrations. The FGCM achieves reproducible and stable photometric calibration of standard magnitudes mbstdm_b^{\mathrm{std}} of stellar sources over the multi-year Y3A1 data sample with residual random calibration errors of σ=56mmag\sigma=5-6\,\mathrm{mmag} per exposure. The accuracy of the calibration is uniform across the 5000deg25000\,\mathrm{deg}^2 DES footprint to within σ=7mmag\sigma=7\,\mathrm{mmag}. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than 5mmag5\,\mathrm{mmag} for main sequence stars with 0.5<gi<3.00.5<g-i<3.0.Comment: 25 pages, submitted to A

    Astrometric calibration and performance of the Dark Energy Camera

    Get PDF
    We characterize the ability of the Dark Energy Camera (DECam) to perform relative astrometry across its 500~Mpix, 3 deg^2 science field of view, and across 4 years of operation. This is done using internal comparisons of ~4x10^7 measurements of high-S/N stellar images obtained in repeat visits to fields of moderate stellar density, with the telescope dithered to move the sources around the array. An empirical astrometric model includes terms for: optical distortions; stray electric fields in the CCD detectors; chromatic terms in the instrumental and atmospheric optics; shifts in CCD relative positions of up to ~10 um when the DECam temperature cycles; and low-order distortions to each exposure from changes in atmospheric refraction and telescope alignment. Errors in this astrometric model are dominated by stochastic variations with typical amplitudes of 10-30 mas (in a 30 s exposure) and 5-10 arcmin coherence length, plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of these atmospheric distortions is not closely related to the seeing. Given an astrometric reference catalog at density ~0.7 arcmin^{-2}, e.g. from Gaia, the typical atmospheric distortions can be interpolated to 7 mas RMS accuracy (for 30 s exposures) with 1 arcmin coherence length for residual errors. Remaining detectable error contributors are 2-4 mas RMS from unmodelled stray electric fields in the devices, and another 2-4 mas RMS from focal plane shifts between camera thermal cycles. Thus the astrometric solution for a single DECam exposure is accurate to 3-6 mas (0.02 pixels, or 300 nm) on the focal plane, plus the stochastic atmospheric distortion.Comment: Submitted to PAS

    Chemical Abundance Analysis of Tucana III, the Second rr-process Enhanced Ultra-Faint Dwarf Galaxy

    Get PDF
    We present a chemical abundance analysis of four additional confirmed member stars of Tucana III, a Milky Way satellite galaxy candidate in the process of being tidally disrupted as it is accreted by the Galaxy. Two of these stars are centrally located in the core of the galaxy while the other two stars are located in the eastern and western tidal tails. The four stars have chemical abundance patterns consistent with the one previously studied star in Tucana III: they are moderately enhanced in rr-process elements, i.e. they have + \approx +0.4 dex. The non-neutron-capture elements generally follow trends seen in other dwarf galaxies, including a metallicity range of 0.44 dex and the expected trend in α\alpha-elements, i.e., the lower metallicity stars have higher Ca and Ti abundance. Overall, the chemical abundance patterns of these stars suggest that Tucana III was an ultra-faint dwarf galaxy, and not a globular cluster, before being tidally disturbed. As is the case for the one other galaxy dominated by rr-process enhanced stars, Reticulum II, Tucana III's stellar chemical abundances are consistent with pollution from ejecta produced by a binary neutron star merger, although a different rr-process element or dilution gas mass is required to explain the abundances in these two galaxies if a neutron star merger is the sole source of rr-process enhancement.Comment: 18 pages, 10 figures; accepted by Ap
    corecore