12 research outputs found

    Lithofacies Characteristics and Sweet Spot Distribution of Lacustrine Shale Oil Reservoirs: A Case Study of the Second Member of the Kongdian Formation in the Cangdong Sag, Bohai Bay Basin

    No full text
    In contrast to marine shale oil reservoirs, lacustrine shale exhibits rapid lithofacies changes and strong mineral compositional heterogeneity, posing new challenges for the evaluation and distribution prediction of shale oil sweet spots. The oiliness, reservoir properties, oil fluidity, and fracability of different lithofacies were analyzed using emission-scanning electron microscopy (FE-SEM) observation, low-pressure nitrogen physisorption (LNP) analysis, mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and triaxial compression testing. Based on the mineral composition obtained from X-ray diffraction (XRD) analysis, total organic carbon (TOC) content, and sedimentary structure, four lithofacies were classified, which are organic-rich laminated calcareous shale (LC), organic-rich laminated siliceous shale (LS), organic-rich laminated mixed shale (LM), and organic-poor massive calcareous shale (MC). Considering the factors of oiliness, reservoir properties, oil fluidity, and fracability, the LC and LS lithofacies were determined as being high-quality sweet spots (type I). Within the stratigraphic sequence divided by GR-INPEFA curves, multi-resolution graph-based clustering (MRGC) analysis of sensitive well logs was used to classify the lithofacies, after which the distribution of sweet spots was predicted. The results reveal that the sweet spots exhibit regular changes in their vertical distribution and a ring-like pattern in their planar distribution, influenced by variations in the sedimentary environment. This finding can offer valuable guidance for the future exploitation of shale oil in the Guandong region

    Rare Earth Partition Characteristics and Sedimentary Diagenetic Response in Layered Argillaceous Limestone: Taking the Shale of Upper Es4 in the Nx55 Well Area as an Example

    No full text
    Taking the layered argillaceous limestone in the upper Es4 in the Dongying Sag as the research object, the geochemical analysis of major, trace, and rare earth elements (REEs) established the response relationship between REE distribution characteristics and sedimentary diagenesis. The average values of total light REE (ΣLREE)/total heavy REE (ΣHREE) of micrite calcite and argillaceous laminae are 6.75 and 4.06, respectively. The LREEs and HREEs are differentiated, consistent with the distribution pattern of REEs in the crust. Th and U elements are more enriched in the sediments in the lacustrine sedimentary environment than in the diagenetic calcite veins. In primary sediments (argillaceous clay and micrite calcite laminae), LREEs are more enriched, HREEs are depleted, and Eu shows positive anomaly-enrichment characteristics. The LREEs and HREEs of the sparry calcite veins are lower than those of the original sediment argillaceous clay and micrite calcite, showing characteristics of a negative anomaly depletion. Sparry calcite veins originate from diagenetic fluid crystallization and precipitation and have the characteristics of low Th and U, evident positive anomalies of Sr and Eu, and substantial depletion of La. The distribution patterns of REEs within the four components of the laminated argillaceous sparry limestone reflect the order of REE distribution from primary sediment laminae (argillaceous clay and micrite calcite) to diagenetic laminae (calcite veins). Compared with the North American shale, the four components of the contact surface between the argillaceous and bright crystalline laminae, the micrite calcite, the calcite veins, and the argillaceous laminae all showed weak negative δCe anomalies and positive δEu anomalies. The fractionation degree between LREEs and HREEs reflected by La/Smcn and Gd/Ybcn is in descending order: the interface between the argillaceous lamina and sparry calcite lamina, micritic calcite, calcite vein, and argillaceous lamina. The argillaceous laminar material has the characteristics of basalt REEs, indicating that the terrestrial debris and argillaceous lacustrine shale in the upper Es4 member of the Niuzhuang subsag are primarily derived from the basic extrusive rocks of the Qingtuozi bulge. REE differentiation is most noticeable at the interface between the argillaceous lamina and calcite vein, proving the directionality of REE differentiation from the original sedimentary lamina to the diagenetic lamina. Shale in the study area is primarily deposited below the redox interface of water at a certain depth, and the deposition rate is stable and slow, providing good conditions for preserving organic matter

    Types, characteristics and effects of natural fluid pressure fractures in shale: A case study of the Paleogene strata in Eastern China

    No full text
    Paleogene organic-rich shales from the Dongying Sag and Zhanhua Sag of Jiyang Depression in Bohai Bay Basin and Northern Jiangsu Basin in Eastern China are studied, to categorize the types and characteristics of natural fluid pressure fractures and their effects on hydrocarbon primary migration. The study shows that fluid overpressure is the main reason for the formation of natural fluid pressure fractures. The natural fluid pressure fractures include three types, early drainage fractures, bedding-parallel vein fractures, and hydrocarbon generation and expulsion fractures. Early drainage fractures have the typical characteristics of snaking morphology, bedding-parallel vein fractures are filled with fibrous calcite vein and coexist with organic matter, and hydrocarbon generation and expulsion fractures generated by hydrocarbon-generating pressurization of kerogen are the key to episodic expulsion of organic-rich shale. Fractures of multiple origins, such as natural fluid pressure fractures, bedding fractures and structural fractures, accumulate gradually, forming interconnected fracture networks which are significant primary migration pathways and reservoir space, act as the seepage channel in the process of multi-scale seepage and are the premise of realizing volume fracturing in shale reservoirs. Key words: shale, natural fluid pressure fracture, early drainage fracture, bedding-parallel vein fracture, hydrocarbon generation and expulsion fracture, hydrocarbon primary migration, Bohai Bay Basin, Northern Jiangsu Basi

    Sedimentary Genesis and Model Analysis of Shale Lithofacies in Jiyang Depression

    No full text
    Based on core observation, rock thin sections, logging data, and testing data, taking the shale of the upper submember of the 4th Member to the lower submember of the 3rd Member of Paleogene Shahejie Formation in Jiyang Depression of Bohai Bay Basin as an example, we determine the lithofacies division scheme, divide the main lithofacies types, analyze the sedimentary origin and development location of different shale lithofacies, establish the continental lake basin sedimentary model, determine the types and enrichment areas of favorable lithofacies, and provide guidance for the exploration and development of Shale oil. The results show that: (1) According to the mineral composition, sedimentary structure, and organic matter abundance, the division scheme of shale lithofacies in the study area is proposed, and the shale lithofacies of the study area was mainly divided into 17 types. (2) Based on the lithologic changes, the lacustrine sedimentary shale area was divided into muddy water area, transition area, and clear water area. (3) Under the background of locally uplifted slope paleogeomorphology, considering the combined effects of climate, topography, hydrodynamic, mechanical, and chemical differentiation of sediments and biological habits, the sedimentary model of shale was established. (4) Organic-rich shale was mainly deposited between the clear water area and the end of the muddy water area, with the characteristics of water, brackish water, strong reduction, and water stratification, and was mainly enriched in the low-lying parts of paleotopography

    Identification of Diagenetic Facies Logging of Tight Oil Reservoirs Based on Deep Learning—A Case Study in the Permian Lucaogou Formation of the Jimsar Sag, Junggar Basin

    No full text
    As a typical tight oil reservoir in a lake basin, the Permian Lucaogou Formation of the Jimsar Sag in the Junggar Basin has great potential for exploration and development. However, at present, there are few studies on the identification of the diagenetic facies of tight oil reservoir logging in the study area, and the control effect of diagenesis on tight oil reservoirs is not clear. The present work investigates the diagenesis and diagenetic facies logging of the study area, making full use of core data, thin sections, and logs, among other data, in order to understand the reservoir characteristics of the Permian Lucaogou Formation in the Jimsar Sag. The results show that the Lucaogou Formation has undergone diagenetic activity such as compaction, carbonate cementation, quartz cementation, and clay mineral infilling and dissolution. The diagenetic facies are classified according to mineral and diagenetic type, namely, tightly compacted facies, carbonate-cemented facies, clay mineral-filling facies, quartz-cemented facies, and dissolution facies. The GR, RT, AC, DEN, and CNL logging curves were selected, among others, and the convolutional neural network was introduced to construct a diagenetic facies logging recognition model. The diagenetic facies of a single well was divided and identified, and the predicted diagenetic facies types were compared with thin sections and SEM images of the corresponding depths. Prediction results had a high coincidence rate, which indicates that the model is of a certain significance to accurately identify the diagenetic facies of tight oil reservoirs. Assessing the physical properties of the studied reservoirs, dissolution facies are the dominant diagenetic facies in the study area and are also the preferred sequence for exploration—to find dominant reservoirs in the following stage

    Bridging Effect of Carbon Nitride with More Negative Conduction Potential and Halogens Promotes the Liquid-Phase Oxidation of Aromatic C–H Bonds

    No full text
    The selective oxidation of benzyl C–H bonds of alkyl aromatic hydrocarbons under solvent-free conditions by using heterogeneous catalysis is a challenging task. In this work, we designed a carbon nitride photocatalyst with a high charge separation efficiency and a directed charge transfer path, which was doped with Ni and Br in the carbon nitride skeleton. Br was deposited directionally onto the electron-rich Ni surface traps to form a bond with Ni, which acted as a charge transfer bridge connecting CN and Br, resulting in a bridging effect. Photogenerated electrons were transferred from Ni target to Br, and electrons were aggregated to form a directional charge transfer path, thereby enhancing the photocatalytic performance of CN. The photocatalyst was utilized for the selective oxidation of ethylbenzene at room temperature, atmospheric pressure, and solvent-free conditions. Under batch conditions simulating solar irradiation, the conversion of ethylbenzene was 43.3% and the selectivity of the product acetophenone was up to 92.0%. With the continuous flow strategy, the conversion of ethylbenzene was increased to 52.4 and 48.1%, respectively, while the selectivity reached 92.7 and 91.0%, and the reaction time was reduced from 24 to 2.1 h. The catalyst was also found to be broadly applicable for the selective oxidation of C–H bonds in the benzyl position of alkyl aromatic hydrocarbons

    Identification of Diagenetic Facies Logging of Tight Oil Reservoirs Based on Deep Learning—A Case Study in the Permian Lucaogou Formation of the Jimsar Sag, Junggar Basin

    No full text
    As a typical tight oil reservoir in a lake basin, the Permian Lucaogou Formation of the Jimsar Sag in the Junggar Basin has great potential for exploration and development. However, at present, there are few studies on the identification of the diagenetic facies of tight oil reservoir logging in the study area, and the control effect of diagenesis on tight oil reservoirs is not clear. The present work investigates the diagenesis and diagenetic facies logging of the study area, making full use of core data, thin sections, and logs, among other data, in order to understand the reservoir characteristics of the Permian Lucaogou Formation in the Jimsar Sag. The results show that the Lucaogou Formation has undergone diagenetic activity such as compaction, carbonate cementation, quartz cementation, and clay mineral infilling and dissolution. The diagenetic facies are classified according to mineral and diagenetic type, namely, tightly compacted facies, carbonate-cemented facies, clay mineral-filling facies, quartz-cemented facies, and dissolution facies. The GR, RT, AC, DEN, and CNL logging curves were selected, among others, and the convolutional neural network was introduced to construct a diagenetic facies logging recognition model. The diagenetic facies of a single well was divided and identified, and the predicted diagenetic facies types were compared with thin sections and SEM images of the corresponding depths. Prediction results had a high coincidence rate, which indicates that the model is of a certain significance to accurately identify the diagenetic facies of tight oil reservoirs. Assessing the physical properties of the studied reservoirs, dissolution facies are the dominant diagenetic facies in the study area and are also the preferred sequence for exploration—to find dominant reservoirs in the following stage

    Architecture and reservoir quality of low-permeable Eocene lacustrine turbidite sandstone from the Dongying Depression, East China

    No full text
    The architecture and quality of lacustrine turbidites that act as petroleum reservoirs are less well documented. Reservoir architecture and multiscale heterogeneity in turbidites represent serious challenges to production performance. Additionally, establishing a hierarchy profile to delineate heterogeneity is a challenging task in lacustrine turbidite deposits. Here, we report on the turbidites in the middle third member of the Eocene Shahejie Formation (Es3), which was deposited during extensive Middle to Late Eocene rifting in the Dongying Depression. Seismic records, wireline log responses, and core observations were integrated to describe the reservoir heterogeneity by delineating the architectural elements, sequence stratigraphic framework and lithofacies assemblage. A petrographic approach was adopted to constrain microscopic heterogeneity using an optical microscope, routine core analyses and X-ray diffraction (XRD) analyses. The Es3m member is interpreted as a sequence set composed of four composite sequences: CS1, CS2, CS3 and CS4. A total of forty-five sequences were identified within these four composite sequences. Sand bodies were mainly deposited as channels, levees, overbank splays, lobes and lobe fringes. The combination of fining-upward and coarsening-upward lithofacies patterns in the architectural elements produces highly complex composite flow units. Microscopic heterogeneity is produced by diagenetic alteration processes (i.e., feldspar dissolution, authigenic clay formation and quartz cementation). The widespread kaolinization of feldspar and mobilization of materials enhanced the quality of the reservoir by producing secondary enlarged pores. In contrast, the formation of pore-filling authigenic illite and illite/smectite clays reduced its permeability. Recovery rates are higher in the axial areas and smaller in the marginal areas of architectural elements. This study represents a significant insight into the reservoir architecture and heterogeneity of lacustrine turbidites, and the understanding of compartmentalization and distribution of high-quality sand reservoirs can be applied to improve primary and secondary production in these fields

    Fracture distribution in a folded fluvial succession: the Puig-reig anticline (South-eastern Pyrenees)

    No full text
    Sedimentary rocks of foreland fold-and-thrust belts typically undergo intensive fracturing as fold grows. The resulting fracture networks can present significant variations depending on the distribution of sedimentary facies and the complex structural characteristics of fold-and-thrust belts. The Puig-reig anticline, located in the south-eastern Pyrenees, mainly exposes proximal fluvial deposits in the north limb and medial fluvial deposits in the rest of the anticline. Thus, this anticline constitutes an excellent case study to investigate the main controls on the distribution of fracture networks in folded fluvial deposits, in terms of structural position and lithofacies variations. Outcrops were selected to be representative of different structural positions, from the fold hinge to its limbs, and of a variety of the main lithofacies, from proximal to medial fluvial deposits. Fracture data were acquired using the linear scanline method. Results indicate that the anticline is affected by four sets of fractures. The north limb is dominated by thick conglomerate bodies with interlayered sandstones deposited from unconfined flash floods and wide-shallow channel streams in the proximal fluvial fan, and presents large fracture spacing and low fracture intensity but relatively large fracture length and aperture. The crest and the crest-limb transition zones are mainly composed of interlayered conglomerates, sandstones, siltstones and clays, deposited from braided channel streams and overbanks in the medial fluvial fan and present fractures with relatively high fracture intensity and variable fracture length and aperture. The south limb, composed of channel filling sandstone layers and stable overbank fine deposits in the medial fluvial fan, is characterised by low fracture intensity and small fracture length and aperture. Based on multiple linear regression analysis, fracture intensity is mainly controlled by the structural position, bedding thickness and lithological associations, with relatively more intense fracturing in thin sandstone layers with multiple interlayers of fine deposits in the anticline crest. The fracture length is mainly controlled by bedding thickness and is affected lithological associations. The fracture apertures are mainly controlled by lithofacies, with relatively higher apertures affecting conglomerate bodies. The results of this study are relevant for characterising similar systems in the subsurface, where data is scarce.Funding was provided by the Catalan Council to the Grup Consolidat de Recerca “Geologia Sedimentària” (2017SGR-824) and the DGICYT Spanish Project PGC2018-093903-B-C22 (Ministerio de Ciencia, Innovación y Universidades/Agencia Estatal de Investigación/Fondo Europeo de Desarrollo Regional, Unión Europea). XS acknowledges funding by the China Scholarship Council for a PhD scholarship (201806450043). EGR acknowledges funding provided by the Spanish Ministry of Science, Innovation and Universities (“Ramón y Cajal” fellowship RYC2018-026335-I). JA is funded by MICINN (Juan de la Cierva fellowship - IJC2018-036074-I).Peer reviewe
    corecore