4,935 research outputs found

    An Adaptation To Life In Acid Through A Novel Mevalonate Pathway.

    Get PDF
    Extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previously identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments

    Generating-function method for fusion rules

    Full text link
    This is the second of two articles devoted to an exposition of the generating-function method for computing fusion rules in affine Lie algebras. The present paper focuses on fusion rules, using the machinery developed for tensor products in the companion article. Although the Kac-Walton algorithm provides a method for constructing a fusion generating function from the corresponding tensor-product generating function, we describe a more powerful approach which starts by first defining the set of fusion elementary couplings from a natural extension of the set of tensor-product elementary couplings. A set of inequalities involving the level are derived from this set using Farkas' lemma. These inequalities, taken in conjunction with the inequalities defining the tensor products, define what we call the fusion basis. Given this basis, the machinery of our previous paper may be applied to construct the fusion generating function. New generating functions for sp(4) and su(4), together with a closed form expression for their threshold levels are presented.Comment: Harvmac (b mode : 47 p) and Pictex; to appear in J. Math. Phy

    Generating-function method for tensor products

    Full text link
    This is the first of two articles devoted to a exposition of the generating-function method for computing fusion rules in affine Lie algebras. The present paper is entirely devoted to the study of the tensor-product (infinite-level) limit of fusions rules. We start by reviewing Sharp's character method. An alternative approach to the construction of tensor-product generating functions is then presented which overcomes most of the technical difficulties associated with the character method. It is based on the reformulation of the problem of calculating tensor products in terms of the solution of a set of linear and homogeneous Diophantine equations whose elementary solutions represent ``elementary couplings''. Grobner bases provide a tool for generating the complete set of relations between elementary couplings and, most importantly, as an algorithm for specifying a complete, compatible set of ``forbidden couplings''.Comment: Harvmac (b mode : 39 p) and Pictex; this is a substantially reduced version of hep-th/9811113 (with new title); to appear in J. Math. Phy

    A precise CNOT gate in the presence of large fabrication induced variations of the exchange interaction strength

    Get PDF
    We demonstrate how using two-qubit composite rotations a high fidelity controlled-NOT (CNOT) gate can be constructed, even when the strength of the interaction between qubits is not accurately known. We focus on the exchange interaction oscillation in silicon based solid-state architectures with a Heisenberg Hamiltonian. This method easily applies to a general two-qubit Hamiltonian. We show how the robust CNOT gate can achieve a very high fidelity when a single application of the composite rotations is combined with a modest level of Hamiltonian characterisation. Operating the robust CNOT gate in a suitably characterised system means concatenation of the composite pulse is unnecessary, hence reducing operation time, and ensuring the gate operates below the threshold required for fault-tolerant quantum computation.Comment: 9 pages, 8 figure

    Scaling behavior in the dynamics of a supercooled Lennard-Jones mixture

    Full text link
    We present the results of a large scale molecular dynamics computer simulation of a binary, supercooled Lennard-Jones fluid. At low temperatures and intermediate times the time dependence of the intermediate scattering function is well described by a von Schweidler law. The von Schweidler exponent is independent of temperature and depends only weakly on the type of correlator. For long times the correlation functions show a Kohlrausch behavior with an exponent β\beta that is independent of temperature. This dynamical behavior is in accordance with the mode-coupling theory of supercooled liquids.Comment: 6 pages, RevTex, three postscript figures available on request, MZ-Physics-10

    How effective is the Forestry Commission Scotland's woodland improvement programme--'Woods In and Around Towns' (WIAT)--at improving psychological well-being in deprived urban communities? A quasi-experimental study

    Get PDF
    Introduction: There is a growing body of evidence that suggests that green spaces may positively influence psychological well-being. This project is designed to take advantage of a natural experiment where planned physical and social interventions to enhance access to natural environments in deprived communities provide an opportunity to prospectively assess impacts on perceived stress and mental well-being.<p></p> Study design and methods: A controlled, prospective study comprising a repeat cross-sectional survey of residents living within 1.5 km of intervention and comparison sites. Three waves of data will be collected: prephysical environment intervention (2013); postphysical environment intervention (2014) and postwoodland promotion social intervention (2015). The primary outcome will be a measure of perceived stress (Perceived Stress Scale) preintervention and postintervention. Secondary, self-report outcomes include: mental well-being (Short Warwick-Edinburgh Mental Well-being Scale), changes in physical activity (IPAQ-short form), health (EuroQoL EQ-5D), perception and use of the woodlands, connectedness to nature (Inclusion of Nature in Self Scale), social cohesion and social capital. An environmental audit will complement the study by evaluating the physical changes in the environment over time and recording any other contextual changes over time. A process evaluation will assess the implementation of the programme. A health economics analysis will assess the cost consequences of each stage of the intervention in relation to the primary and secondary outcomes of the study.<p></p> Ethics and dissemination: Ethical approval has been given by the University of Edinburgh, Edinburgh College of Art Research, Ethics and Knowledge Exchange Committee (ref. 19/06/2012). Findings will be disseminated through peer-reviewed publications, national and international conferences and, at the final stage of the project, through a workshop for those interested in implementing environmental interventions.<p></p&gt
    corecore