94 research outputs found

    Comparative Analysis of Four DNA Preparation Kits for Quercus falcata, palustris, and rubra DNA Extractions and Subsequent DNA Sequencing

    Get PDF
    In 2011, of the 8.7 million species of lif suspected to populate the globe only 1.2 million had been catalogued and it was estimated that 1,200 years would pass before the remainder were processed, allowing the possibility that some species would go extinct before they were even discovered (Mora, Tittensor, Adl, Simpson, & Worm, 2011). DNA barcoding may provide an answer to this problem. According to Hebert and Gregory, “DNA barcoding will accelerate the pace of species discovery by allowing taxonomists to rapidly sort specimens... by highlighting divergent taxa that may represent new species… and by making species identifications more easily available” (2005). Barcoding has been used to chart the relationships between animals and plants, track endangered plant species, trace the origin of wood, and update taxonomic classification (Schroeder et al., 2016; Simeone, Roberta, Alessio, Federico, & Bartolomeo, 2013). Unfortunately one of the essential steps for barcoding, DNA extraction, can experience contamination which impairs downstream DNA utility (Peist et al., 2001). In a recent study regarding DNA barcoding in Quercus species, the DNA extract did not perform adequately in PCR or DNA sequencing (McKenzie and Trott 2017). Johnson theorized that polyphenol contamination was the likely cause of the malperformance. In this experiment, we seek to troubleshoot problems found in Johnson and Trott’s (2017) study. We evaluated four commercially available plant specific DNA preparation mini-spin column kits to determine which produced the best PCR-gel electrophoresis results (correct DNA length of single-band PCR product) and the greatest number of sequences with electropherograms that had minimally overlapping signals and low indistinguishable nucleotide (N) instances. The kit which fit this criteria was selected as the most efficient DNA preparation Kit for extracting dna from Quercus falcata, palustris, and rubra species

    USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling

    Get PDF
    Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis

    RASSF1A and the rs2073498 Cancer Associated SNP

    Get PDF
    RASSF1A is one of the most frequently inactivated tumor suppressors yet identified in human cancer. It is pro-apoptotic and appears to function as a scaffolding protein that interacts with a variety of other tumor suppressors to modulate their function. It can also complex with the Ras oncoprotein and may serve to integrate pro-growth and pro-death signaling pathways. A SNP has been identified that is present in approximately 29% of European populations [rs2073498, A(133)S]. Several studies have now presented evidence that this SNP is associated with an enhanced risk of developing breast cancer. We have used a proteomics based approach to identify multiple differences in the pattern of protein/protein interactions mediated by the wild type compared to the SNP variant protein. We have also identified a significant difference in biological activity between wild type and SNP variant protein. However, we have found only a very modest association of the SNP with breast cancer predisposition

    The association between serum biomarkers and disease outcome in influenza A(H1N1)pdm09 virus infection: results of two international observational cohort studies

    Get PDF
    BACKGROUND Prospective studies establishing the temporal relationship between the degree of inflammation and human influenza disease progression are scarce. To assess predictors of disease progression among patients with influenza A(H1N1)pdm09 infection, 25 inflammatory biomarkers measured at enrollment were analyzed in two international observational cohort studies. METHODS Among patients with RT-PCR-confirmed influenza A(H1N1)pdm09 virus infection, odds ratios (ORs) estimated by logistic regression were used to summarize the associations of biomarkers measured at enrollment with worsened disease outcome or death after 14 days of follow-up for those seeking outpatient care (FLU 002) or after 60 days for those hospitalized with influenza complications (FLU 003). Biomarkers that were significantly associated with progression in both studies (p<0.05) or only in one (p<0.002 after Bonferroni correction) were identified. RESULTS In FLU 002 28/528 (5.3%) outpatients had influenza A(H1N1)pdm09 virus infection that progressed to a study endpoint of complications, hospitalization or death, whereas in FLU 003 28/170 (16.5%) inpatients enrolled from the general ward and 21/39 (53.8%) inpatients enrolled directly from the ICU experienced disease progression. Higher levels of 12 of the 25 markers were significantly associated with subsequent disease progression. Of these, 7 markers (IL-6, CD163, IL-10, LBP, IL-2, MCP-1, and IP-10), all with ORs for the 3(rd) versus 1(st) tertile of 2.5 or greater, were significant (p<0.05) in both outpatients and inpatients. In contrast, five markers (sICAM-1, IL-8, TNF-α, D-dimer, and sVCAM-1), all with ORs for the 3(rd) versus 1(st) tertile greater than 3.2, were significantly (p≤.002) associated with disease progression among hospitalized patients only. CONCLUSIONS In patients presenting with varying severities of influenza A(H1N1)pdm09 virus infection, a baseline elevation in several biomarkers associated with inflammation, coagulation, or immune function strongly predicted a higher risk of disease progression. It is conceivable that interventions designed to abrogate these baseline elevations might affect disease outcome

    Metabolic remodeling of white adipose tissue in obesity

    Get PDF
    Adipose tissue metabolism is a critical regulator of adiposity and whole body energy expenditure; however, metabolic changes that occur in white adipose tissue (WAT) with obesity remain unclear. The purpose of this study was to understand the metabolic and bioenergetic changes occurring in WAT with obesity. Wild-type (C57BL/6J) mice fed a high-fat diet (HFD) showed significant increases in whole body adiposity, had significantly lower V̇o2, V̇co2, and respiratory exchange ratios, and demonstrated worsened glucose and insulin tolerance compared with low-fat-fed mice. Metabolomic analysis of WAT showed marked changes in lipid, amino acid, carbohydrate, nucleotide, and energy metabolism. Tissue levels of succinate and malate were elevated, and metabolites that could enter the Krebs cycle via anaplerosis were mostly diminished in high-fat-fed mice, suggesting altered mitochondrial metabolism. Despite no change in basal oxygen consumption or mitochondrial DNA abundance, citrate synthase activity was decreased by more than 50%, and responses to FCCP were increased in WAT from mice fed a high-fat diet. Moreover, Pgc1a was downregulated and Cox7a1 upregulated after 6 wk of HFD. After 12 wk of high-fat diet, the abundance of several proteins in the mitochondrial respiratory chain or matrix was diminished. These changes were accompanied by increased Parkin and Pink1, decreased p62 and LC3-I, and ultrastructural changes suggestive of autophagy and mitochondrial remodeling. These studies demonstrate coordinated restructuring of metabolism and autophagy that could contribute to the hypertrophy and whitening of adipose tissue in obesity

    Does language really matter when solving mathematical word problems in a second language? A cognitive load perspective

    Get PDF
    © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. In a bilingual educational setting, even when mathematical word problems are presented in one’s first language, students may still perform poorly if cognitive constraints such as working memory limitations are not taken into consideration. The purpose of this study was to investigate the conditions under which learners are better able to solve word problems when presented in different modes (Reading Only, Listening Only and Reading and Listening). One hundred and thirty-two students from a federal institution in the United Arab Emirates participated in the study. Results indicated that Listening Only was negatively related to performance regardless of language. The study also found that solving mathematical word problems in English and Arabic was positively related to performance only when a dual mode, both Reading and Listening, was used. When solving mathematical word problems, both language and mode of instruction matter. Educational implications are discussed

    The DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoforms

    Get PDF
    Members of the casein kinase 1 (CK1) family of serine-threonine protein kinases are implicated in the regulation of many cellular processes, including the cell cycle, circadian rhythms, and Wnt and Hedgehog signaling. Because these kinases exhibit constitutive activity in biochemical assays, it is likely that their activity in cells is controlled by subcellular localization, interactions with inhibitory proteins, targeted degradation, or combinations of these mechanisms. We identified members of the FAM83 family of proteins as partners of CK1 in cells. All eight members of the FAM83 family (FAM83A to FAM83H) interacted with the α and α-like isoforms of CK1; FAM83A, FAM83B, FAM83E, and FAM83H also interacted with the δ and ε isoforms of CK1. We detected no interaction between any FAM83 member and the related CK1γ1, CK1γ2, and CK1γ3 isoforms. Each FAM83 protein exhibited a distinct pattern of subcellular distribution and colocalized with the CK1 isoform(s) to which it bound. The interaction of FAM83 proteins with CK1 isoforms was mediated by the conserved domain of unknown function 1669 (DUF1669) that characterizes the FAM83 family. Mutations in FAM83 proteins that prevented them from binding to CK1 interfered with the proper subcellular localization and cellular functions of both the FAM83 proteins and their CK1 binding partners. On the basis of its function, we propose that DUF1669 be renamed the polypeptide anchor of CK1 domain
    corecore