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Abstract 

The casein kinase 1 (CK1) family of serine-threonine protein kinases are implicated in the 

regulation of many cellular processes, including the cell cycle, circadian rhythms, and Wnt and 

Hedgehog signalling. It is therefore critically important to understand how their activity is 

controlled in cells. Because these kinases exhibit constitutive activity in biochemical assays, it is 

likely that their activity in cells is controlled by subcellular localization, interactions with inhibitory 

proteins, targeted degradation, or combinations of these mechanisms. We identified members 

of the FAM83 family of proteins as partners of CK1 in cells. All eight members of the FAM83 

family (FAM83A–H) interacted with the a and a-like isoforms of CK1; FAM83A, -B, -E, and -H 

also interacted with the d and e isoforms of CK1. We detected no interaction between any 

FAM83 member with the related CK1γ1, -2 and -3 isoforms. Each FAM83 protein exhibited a 

distinct pattern of subcellular distribution and colocalized with the CK1 isoform(s) to which it 

bound. The interaction of FAM83 proteins with CK1 isoforms was mediated by the conserved 

domain of unknown function 1669 (DUF1669) that characterises the FAM83 family. Mutations in 

FAM83 proteins that prevented them from binding to CK1 interfered with the proper subcellular 

localization of both the FAM83 proteins and their CK1 binding partners  and interfered with the 

cellular functions of both families of proteins. Based on its function, we propose that DUF1669 

be renamed the polypeptide anchor of CK1 (PACK1) domain. 

This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not 
for redistribution. The definitive version was published in Science Signaling on 22/05/2018, vol. 11, DOI: 
10.1126/scisignal.aao2341
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Introduction 

The eight members of the FAM83 family of proteins are conserved in vertebrates but are poorly 

characterised. They share a conserved N-terminal DUF1669 (domain of unknown function 

1669) domain of ~300 amino acids, but each member possesses unique C-terminus of variable 

length (1, 2). The amino acid sequences of the FAM83 family members offer very few clues to 

their functions. The DUF1669 domain contains a putative phospholipase D–like (PLD-like) 

catalytic motif, which is characterized by the presence of an HxKxxxxD (HKD) sequence motif. 

Typically, two such motifs exist within each PLD protein, with the two HKD motifs coming 

together to form the catalytic core of the enzyme (3). FAM83 proteins, on the other hand, have 

only one HKD motif, and the histidine residue within the motif is absent from all but FAM83D 

(also known as CHICA) (fig. S1). No PLD activity has yet been demonstrated for any FAM83 

member (4). Recent studies have implicated FAM83A and FAM83B in oncogenesis and 

resistance to tyrosine kinase inhibitors (4-6). FAM83D has been reported to localize to the 

mitotic spindle and interact with the chromokinesin kinesin family member 22 (KIF22, also called 

Kid), the microtubule-binding protein hyaluronan-mediated motility receptor (HMMR), and the 

light chain of the motor protein dynein (DYNLL1) to correctly orient the metaphase plate in 

mitosis (7, 8). FAM83G, also known as PAWS1 [protein associated with suppressor of mothers 

against decapentaplegic 1 (SMAD1)] interacts with the transcription factor SMAD1 and 

promotes the transcription of non-canonical bone morphogenetic protein (BMP) target genes 

(9). FAM83H mutations have been reported in both familial and spontaneous cases of 

amelogenesis imperfecta (AI), a genetic dental condition associated with soft enamel due to 

defective tooth mineralization  (10-12). No functions have yet been reported for FAM83C, 

FAM83E, or FAM83F. Despite the increasing evidence that FAM83 proteins are involved in 

diverse biological processes, the precise molecular and biochemical roles of the FAM83 

proteins, and in particular the DUF1669 domain that characterises them, remain undefined. 

By taking a comprehensive proteomic approach to uncover potential roles of the FAM83 family 

and the DUF1669 domain, we identified many unique interactors of each of the FAM83 proteins, 

consistent with the diverse sequence composition of these related proteins. Nevertheless, the a, 

a-like, d, and e isoforms of casein kinase 1 (CK1) were identified as interacting with each of the

FAM83 members, albeit with different affinities and specificities. CK1 enzymes in vertebrates

include the a, a-like, d, e, g1, g2, and g3 isoforms, all of which are serine-threonine protein

kinases. CK1 isoforms consist of a highly conserved N-terminal kinase domain that has little
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homology outside this family (13, 14). Within the CK1 family, there is greater overall sequence 

homology between the a and a-like isoforms, between the d and e isoforms, and between the 

g1, g2, and g3 isoforms (13, 14). CK1 isoforms play fundamental roles in many aspects of 

cellular homeostasis, including cell cycle progression (15), circadian rhythm (16-18), survival 

(19, 20), DNA damage repair (21), membrane trafficking, and integration of signalling processes 

(13-15). Increased catalytic activity of CK1 isoforms has been linked to cancer (14) and 

neurological pathologies (22). Due to their spontaneous in vitro kinase activity towards many 

substrates, CK1 isoforms are considered to be constitutively active kinases in cells (13). 

Consistent with the large number of cellular processes influenced by CK1 isoforms, they have 

been reported to localize to many subcellular compartments, including the plasma membrane, 

cytoplasm, nucleus, actin cytoskeleton, and mitotic spindle, and hundreds of putative substrates 

have been described (13, 15, 23). Although CK1 isoforms preferentially phosphorylate serine 

and threonine residues within the consensus sequence pS/pT-X-X-S/T, in many cases CK1 

isoforms phosphorylate residues outside the context of the consensus motif, such as the 

phosphorylation of b-catenin on Ser45 (13). In some cases, acidic residues can substitute for the 

phosphoserine or phosphothreonine residues within the consensus motif (13). All of these 

studies indicate that the localization, activity, and substrate specificity of CK1 are tightly 

regulated in cells. 

 

Interacting proteins that potentially control the subcellular localization, substrate accessibility, 

stability, or activity of CK1 isoforms remain elusive. Two scaffold proteins, the centrosomal and 

golgi N-kinase anchoring protein (CG-NAP, also known as AKAP450) and the DEAD-box RNA 

helicase DDX3, have been implicated in the centrosomal localization of CK1d during the cell 

cycle and in Wnt-dependent phosphorylation of Dishevelled (DVL) by CK1ε, respectively (24, 

25). The potential existence of CK1 scaffolds in cells is supported by an analogous role for the 

A-kinase anchoring proteins (AKAPs), which are established scaffolds that control the activity 

and substrate specificity of protein kinase A (PKA; also known as cAMP-dependent kinase) by 

interacting with PKA and tethering it to distinct subcellular compartments (26). 

 

Our data suggest that the DUF1669 domain of the FAM83 family mediates the interaction of 

these proteins with CK1 isoforms. FAM83 members localized to different subcellular 

compartments and co-localized in cells only with the CK1 isoforms with which they interacted in 

vitro. Mutations within the DUF1669 domain that abolish the interaction with CK1 interfered with 

the localization of both the FAM83 members themselves as well as their CK1 binding partners. 
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We hypothesise that FAM83 members, through their association with CK1 isoforms, restrict the 

function of CK1 enzymes in cells by directly controlling their subcellular localization, and 

perhaps their activity, stability, or substrate specificity. 

 
Results 
 

The FAM83 members interact with CK1 isoforms 
The FAM83 family of proteins is characterized by a conserved domain of unknown function, 

termed DUF1669, that is present at their N-termini, whereas the rest of the proteins vary in 

length and are not conserved between members (Fig. 1A; fig. S1). In order to investigate the 

roles of the FAM83 family of proteins, we generated transgenic human embryonic kidney HEK 

293 cell lines each stably expressing a single copy of a FAM83 gene under the control of a 

tetracycline (Tet)-inducible promoter. All 8 of the transgenically-expressed FAM83 proteins were 

tagged at the N-terminus with green fluorescent protein (GFP). In these cell lines, doxycycline 

treatment induced the expression of the respective FAM83 protein in a time-dependent manner, 

with detectable amounts observed as early as 30 min after doxycycline treatment (Fig. 1B). 

Similarly, we generated U2OS osteosarcoma cells stably integrated with a single copy of each 

FAM83 gene tagged at the C-terminus with green fluorescent protein (GFP). All FAM83 

proteins, except FAM83B, displayed robust expression following 24 h treatment with 

doxycycline (Fig. 1C). For both sets of cell lines (HEK 293 and U2OS), cells stably integrated 

with GFP alone under the Tet-inducible promoter were used as controls. 

 

Following induction with doxycycline, extracts from HEK 293 and U2OS cells expressing the 

GFP control and the FAM83 proteins tagged with GFP at either the N-terminus (HEK 293) or C-

terminus (U2OS) were subjected to GFP immunoprecipitation and separation of the 

immunoprecipitated proteins by SDS-PAGE (fig. S2, A and B). The gel sections including the 

entire lane for each sample were excised and digested with trypsin (fig. S2, A and B). The 

resulting peptides were identified using mass spectrometry. In addition to confirming the identity 

of the respective FAM83 proteins in each lane, we identified SMAD isoforms in GFP-FAM83G 

immunoprecipitates (2) and DYNLL1 and HMMR in GFP-FAM83D immunoprecipitates (7, 8) (fig 

S2, A and B), consistent with previously reported observations of these protein-protein 

interactions. Under these conditions, at least one or more of the a, a-like, d, and e isoforms of 

CK1 were identified as interactors for every FAM83 family member, regardless of the positioning 

of the GFP tag and the cell line in which the fusion protein was expressed (Fig. 2A). Analysis of 
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the top three precursor ion intensities of the individual CK1 isoforms bound to each GFP-FAM83 

protein from HEK 293 extracts revealed that although all FAM83 members interacted with CK1a 

and a-like, only FAM83A, FAM83B, FAM83E, and FAM83H interacted with CK1d and CK1e 

(Fig. 2A). Similar patterns in spectral intensities were observed for CK1a, CK1d, and CK1e 

bound to FAM83-GFP proteins from U2OS cell extracts, whereas CK1a-like was not detected in 

FAM83C, FAM83D, and FAM83H immunoprecipitations (Fig. 2A). Although we observed 

differences in spectral intensities for each CK1 isoform associated with different FAM83 

members, it is difficult to interpret these differences because the relative amount of FAM83 

protein in each lane was quite different as judged by the intensity of Instant blue stains (fig S2, A 

and B). 

 

To verify the interactions between FAM83 members and CK1 isoforms, GFP-FAM83A–H or 

control GFP immunoprecipitates from HEK 293 extracts were probed for co-precipitation of 

endogenous CK1a, d, and e isoforms. The relative amounts of FAM83 proteins in 

immunoprecipitates varied in that the amounts of FAM83B and FAM83D, both in extracts and 

immunoprecipitates, were lower as compared to other FAM83 members (Fig. 2B; fig. S3A). 

Under these conditions and in agreement with the mass spectrometry data above, all GFP-

FAM83 proteins interacted with CK1a, whereas GFP alone did not (Fig. 2B). We observed that 

FAM83B, FAM83E, FAM83G, and FAM83H appeared to interact more strongly with CK1a than 

did FAM83A, FAM83C, FAM83D, and FAM83F (Fig. 2B).  Endogenous CK1d and e were mainly 

detected in FAM83B, FAM83E, and FAM83H immunoprecipitates, although CK1e was also 

observed in FAM83A immunoprecipitates (Fig. 2B). In line with the proteomic data, endogenous 

SMAD1 co-precipitated with only FAM83G, whereas endogenous HMMR and DYNLL1 co-

precipitated exclusively with FAM83D (Fig. 2B). 

 

We next sought to verify endogenous interactions between some FAM83 members and the a 

and e isoforms of CK1. Given the absence of robust immunoprecipitating antibodies recognizing 

FAM83 members, we exploited CRISPR/Cas9 genome editing technology to introduce GFP-tag 

knock-ins at the FAM83B and FAM83G loci in HaCaT keratinocytes and U2OS cells 

respectively. GFP tags were thus inserted into the N-terminus of endogenous FAM83B and into 

the C-terminus of endogenous FAM83G. The disappearance of the endogenous FAM83B and 

FAM83G signals at the predicted molecular weights upon GFP-tag knock-ins and their 

concomitant appearance at higher molecular weights equivalent to the addition of GFP, in 
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combination with genomic DNA sequencing, confirmed the insertion of the GFP tag at the 

appropriate loci (fig. S3B). Whereas we detected endogenous CK1a in GFP immunoprecipitates 

from extracts of cells expressing GFP-FAM83B and from cells expressing FAM83G-GFP, we 

detected CK1e only in immunoprecipitates from cells expressing GFP-FAM83B (Fig. 2, C and 

D). We detected neither the a nor e isoform of CK1 in GFP immunoprecipitates from wild-type 

cells (Fig. 2, C and D). Furthermore, we observed endogenous FAM83G and FAM83H proteins 

in CK1a immunoprecipitates from U2OS cell extracts but not in pre-immune IgG control 

immunoprecipitates (Fig. 2E). The CK1 branch of the human protein kinase family also includes 

g1, g2, and g3 isoforms of CK1, tau-tubulin kinase (TTBK1), TTBK2, vaccinia-related kinase 1 

(VRK1), VRK2, and VRK3 (27). In U2OS cell extracts, under co-expression conditions in which 

FAM83G interacted with CK1a, we were unable to detect interactions between FAM83G and 

either TTBK2 or CK1g (fig. S4A). This, together with the proteomic data, suggests that FAM83 

members interact only with one or more of the a, a-like, d, and e isoforms of CK1 but not with 

CK1g1, CK1g2, CK1g3, or other members of the CK1 family. 

 
The DUF1669 domain is sufficient to mediate the interaction of FAM83 proteins with CK1 

Because all eight FAM83 family members contain the DUF1669 domain (Fig. 1A; fig S1), we 

postulated that this domain might mediate the observed interaction between FAM83 and CK1 

proteins. To map the minimal domain within FAM83 proteins that can interact with CK1 

isoforms, we co-expressed Myc-tagged FAM83G fragments with full-length hemagglutinin (HA)-

tagged CK1a in FAM83G-/- U2OS cells (28) and performed coimmunoprecipitation experiments 

(Fig. 3A). HA-CK1a immunoprecipitates only included those FAM83G fragments that contained 

residues 165-307 within the DUF1669 domain (Fig. 3A). We asked whether the interaction 

between the DUF1669 domain and CK1 was direct by performing an in vitro binding assay with 

purified recombinant proteins: a His-tagged form of residues 124–304 of FAM83A [6xHis-

FAM83A(124-304)] and the kinase domain of CK1e. Following precipitation of His-FAM83A 

(124-304) with nickel resin and its elution using imidazole, we observed both CK1e and FAM83A 

(124-304) in the eluate, suggesting a robust and direct interaction between the two (Fig. 3B). To 

probe the CK1 isoform–specific nature of the interactions of FAM83 members, we replaced the 

DUF1669 domain of FAM83G, which interacts only with CK1a, with that of FAM83H, which 

interacts with both CK1a and CK1e. We expressed this chimeric protein (DUF1669H-FAM83G) 

in HEK 293 cells and tested whether they interacted with CK1a and CK1e in cell extracts. The 

DUF1669H-FAM83G chimera interacted with both CK1a and CK1e, much like FAM83H (fig. S5), 
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suggesting that the DUF1669 domain of FAM83H is sufficient to confer selectivity for specific 

CK1 isoforms. 

 

A CK1 docking motif that includes the amino acid sequence F-X-X-X-F was identified in nuclear 

factor of activated T cells 1 (NFAT1), Period 1 (PER1), and PER2, and mutation of either 

phenylalanine residue abolished CK1 interactions with these proteins (29). One such F-X-X-X-F 

motif is conserved within the DUF1669 domain of the FAM83A–G proteins, and FAM83H has 

four such motifs (30) (fig. S1). To determine whether mutations within this conserved motif were 

sufficient to disrupt the CK1 interaction, we tested the ability of FLAG-tagged wild-type and 

various mutant forms of FAM83G (FAM83GF296A, FAM83GF300A, and FAM83GF296A,F300A) to 

interact with HA-CK1 when coexpressed in FAM83G-/- U2OS cells. Whereas wild-type FAM83G 

interacted robustly with CK1a, the FAM83GF296A and FAM83GF296A,F300A mutants did not (Fig. 

3C). Rather surprisingly, FAM83GF300A interacted with CK1a as robustly as did wild-type 

FAM83G (Fig. 3C), suggesting that the mode through which CK1 interacts with FAM83 proteins 

might differ from that through which it interacts with NFAT1, PER1, and PER2, which requires 

both phenylalanine residues (29). Consistent with this notion, mutational scanning of conserved 

residues within the 165–307 region of FAM83G uncovered another mutation, D262A, that also 

abolished the interaction with CK1a (31). 

 

Armed with the knowledge that the D262A and F296A mutations both abolish the interaction of 

FAM83G with CK1a, we asked whether equivalent mutations in other FAM83 members also 

abolished their association with CK1a and CK1e isoforms. We mutated the residues equivalent 

to FAM83G Asp262 and Phe296 in FAM83E (Asp243 and Phe277), FAM83F (Asp250and Phe284), and 

FAM83H (Asp236 and Phe270) to Ala. These substitutions are referred to as DA and FA, 

respectively. We individually expressed wild-type GFP-FAM83E–H, the DA mutants (GFP-

FAM83E–HDA), and the FA mutants (GFP-FAM83E–HFA) in U2OS cells and tested their ability to 

coimmunoprecipitate endogenous CK1a or CK1e isoforms. In comparison to wild-type 

FAM83E–H, both the DA and FA mutations attenuated the interaction of FAM83 proteins with 

CK1a and CK1e isoforms (Fig. 3D). These observations suggest that the interaction between 

the DUF1669 domain and CK1 isoforms may be mediated through a conserved structural motif 

surrounding the residues equivalent to Asp262 and Phe296 in FAM83G. Consistent with previous 

observations (Fig. 2, B to D), although FAM83E and FAM83H bound to both CK1a and CK1e, 

FAM83F and FAM83G bound only to CK1a (Fig. 3D). 
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FAM83 proteins and CK1a colocalize in cells 

Given the interaction between all of the FAM83 members and CK1a in cell extracts, we sought 

to investigate whether FAM83 proteins also interact with CK1a in cells. We coexpressed 

mCherry-CK1a and an N-terminally GFP-tagged FAM83 family member (GFP-FAM83) under 

the control of a Tet-inducible promoter in U2OS cells and evaluated the localization of both 

proteins by fluorescence microscopy. We performed this experiment with each FAM83 family 

member (GFP-FAM83A–H). Upon induction of GFP-FAM83 expression, we observed 

overlapping colocalization of every GFP-FAM83 member with mCherry-CK1a (Fig. 4), with each 

FAM83 protein exhibiting a distinct pattern of subcellular localization. Pan-cellular staining was 

observed for both GFP-FAM83A and GFP-FAM83B, along with additional perinuclear punctate 

structures for FAM83A and membrane punctate structures for FAM83B (Fig. 4). GFP-FAM83C 

displayed distinct fibrous patterns of fluorescence in the cytoplasm and in the vicinity of 

membrane ruffles, suggesting possible colocalization with cortical actin stress fibres (Fig. 4). 

GFP-FAM83D displayed cytoplasmic staining, with some punctate staining in the nucleus (Fig. 

4). FAM83D had previously been reported to localize to the spindle apparatus during mitosis (7, 

8). GFP-FAM83E exhibited cytoplasmic and strong perinuclear staining (Fig. 4). GFP-FAM83F 

localized to the plasma membrane, with some staining also observed in the cytoplasm and 

nucleus (Fig. 4). As reported previously (2), GFP-FAM83G localized mainly to the cytoplasm, 

but some nuclear staining was also noted (Fig. 4). GFP-FAM83H displayed primarily 

cytoplasmic, and few nuclear, punctate fluorescence patterns (Fig. 4), like the patterns 

described previously for FLAG-FAM83H overexpressed in HCT116 cells (11). In cells 

expressing both mCherry-CK1a and the GFP tag (not fused to a FAM83 protein), the GFP 

signal was predominantly nuclear and did not overlap with the mCherry signal, which was 

present throughout the cell (fig. S6). When expressed alone, mCherry-CK1a displayed a pan-

cellular staining pattern (fig. S6). These observations describe the subcellular localization 

profiles for all FAM83 members and demonstrate that each member colocalizes with CK1a. 

 

To confirm whether endogenous CK1a also displayed similar overlapping subcellular 

distribution with FAM83 members, we examined the subcellular localization pattern of 

endogenous CK1a in U2OS cells stably expressing GFP, GFP-FAM83B, GFP-FAM83F, or 

GFP-FAM83H. No overlapping fluorescence was detected between endogenous CK1a and 

GFP, which was employed as a negative control (Fig. 5). Overlapping plasma membrane and 
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perinuclear staining was observed for endogenous CK1a and GFP-FAM83B (Fig. 5). Likewise, 

strong overlapping plasma membrane staining was observed for endogenous CK1a and GFP-

FAM83F (Fig. 5). GFP-FAM83H and endogenous CK1a displayed overlapping staining in 

cytoplasmic and nuclear speckles (Fig. 5). Collectively these observations demonstrate that 

upon overexpression, each FAM83 protein is capable of relocating endogenous CK1a to the 

distinct subcellular compartments in which they reside. 

 
The association between FAM83 proteins and specific CK1 isoforms is selective in cells 

The above data demonstrated that all eight FAM83 members (A–H) interacted and colocalized 

with both overexpressed and endogenous CK1a and that FAM83A, FAM83B, FAM83E, and 

FAM83H also interacted with the CK1d and CK1e isoforms in cell extracts. To determine 

whether the specificity of FAM83 proteins for binding to a specific subset of CK1 isoforms 

applied to cells as well as to cell extracts, we compared the subcellular distribution of CK1a and 

CK1e with that of FAM83F, which interacted selectively with CK1a in cell extracts, and FAM83H, 

which interacted with both CK1a and CK1e in cell extracts. GFP-FAM83F or GFP-FAM83H was 

coexpressed in U2OS cells with either mCherry-CK1a or mCherry-CK1e. As observed earlier 

(Fig. 4 and 5), we found that both GFP-FAM83F and GFP-FAM83H displayed overlapping 

fluorescence with mCherry-CK1a, at the plasma membrane and in cytoplasmic speckles, 

respectively (Fig. 6A). In contrast, GFP-FAM83H, but not GFP-FAM83F, also colocalized with 

mCherry-CK1e at these sites (Fig. 6A). Next, we sought to verify whether the binding specificity 

of GFP-FAM83F and GFP-FAM83H extended to endogenous CK1a and CK1e. In wild-type 

U2OS cells, endogenous CK1a and CK1e both displayed pan-cellular distributions, with some 

speckle-like structures also visible in the cytoplasm (Fig. 6B). In U2OS cells expressing GFP-

FAM83F, we observed overlapping plasma membrane colocalization only with endogenous 

CK1a but not with CK1e (Fig. 6B). In contrast, in U2OS cells expressing GFP-FAM83H, we 

observed overlapping cytoplasmic and nuclear speckle staining patterns with both endogenous 

CK1a and CK1e (Fig. 6B). These data are consistent with our observations using 

overexpressed mCherry-CK1a and mCherry-CK1e (Fig. 6A). Collectively, these data 

recapitulate in cells the distinct sets of interactions that we observed between FAM83 members 

and CK1 isoforms from the proteomic data (Fig. 2A). 

 

Association with CK1 determines the subcellular localization of FAM83C 
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We next asked whether the interaction between CK1 and FAM83 proteins was important for 

their subcellular localizations. For this purpose, we chose GFP-FAM83C because of its distinct 

cortical fibre-like subcellular localization pattern (Fig. 4). First, we confirmed in cell extracts that 

only wild-type GFP-FAM83C coimmunoprecipitated HA-tagged CK1a and that the GFP-

FAM83CD259A and GFP-FAM83CF293A mutants and control GFP did not (Fig. 7A). Next, we co-

transfected U2OS cells with mCherry-CK1a and wild-type GFP-FAM83C, GFP-FAM83CD259A, or 

GFP-FAM83CF293A and examined their subcellular localization by fluorescence microscopy. 

Whereas GFP-FAM83C and mCherry-CK1a fluorescence colocalized along fibrous structures 

(Fig. 4 and 7B), GFP-FAM83CD259A and GFP-FAM83CF293A were predominantly found in the 

cytoplasm, in slightly distorted fibrous fluorescence patterns that did not overlap with mCherry-

CK1a fluorescence (Fig. 7B). When it was expressed alone or with the FAM83CD259A and GFP-

FAM83CF293A mutants, mCherry-CK1a was found in a diffuse cytoplasmic pattern, but adopted a 

fibrous appearance in the cytoplasm when it was co-expressed with wild-type FAM83C (Fig. 

7B). These observations suggest that the interaction between FAM83C and CK1a determines 

the subcellular localization of both proteins.  

 
FAM83H co-localizes with and contributes to the subcellular localization of endogenous 
CK1a and CK1e isoforms 
We have shown that FAM83H displays a distinct punctate fluorescence pattern when 

overexpressed in U2OS cells (Fig. 4 to 6). We generated FAM83H-/- U2OS cells using 

CRISPR/Cas9 genome editing technology and asked whether endogenous CK1a colocalized 

with GFP-FAM83H that was transgenically expressed in these cells. In FAM83H-/- cells, CK1a 

was primarily cytoplasmic with few perinuclear puncta. When GFP-FAM83H was expressed 

transgenically, both GFP-FAM83H and endogenous CK1a adopted a pan-cellular punctate 

pattern (Fig. 8A). Although the majority of GFP-FAM83H puncta overlapped with endogenous 

CK1a staining, suggesting robust co-localization, the presence of some non-overlapping GFP-

FAM83H and CK1a puncta suggest that FAM83H and CK1a may exist in complexes with other 

proteins (Fig. 8A). When the CK1-interaction deficient mutants, GFP-FAM83HD236A and GFP-

FAM83HF270A, were expressed in FAM83H-/- U2OS cells, they displayed cytoplasmic, non-

punctate fluorescence that did not overlap with endogenous CK1a (Fig. 8A). The intensity of 

CK1a punctate staining in FAM83H-/- cells and in FAM83H-/- cells expressing CK1-binding–

deficient mutant forms of FAM83H was lower compared to that seen in cells expressing wild-

type GFP-FAM83H (Fig. 8A), suggesting that the interaction with FAM83H determines the 
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localization of CK1a to the punctate structures. Next, we quantified the co-localization 

correlation between CK1a and wild-type GFP-FAM83H, GFP-FAM83HD236A or GFP-

FAM83HF270A. The localization of CK1a positively correlated with that of wild-type GFP-FAM83H 

(Pearson correlation coefficient 0.7523), whereas it did not correlate with the GFP-FAM83HD236A 

(0.001504) or GFP-FAM83HF270A (0.001504) mutants (Fig. 8B). Rescue of FAM83H-/- U2OS 

cells with wild-type or mutant GFP-FAM83H constructs was confirmed by Western blotting and 

suggested that the abundance of FAM83H in these cells was substantially higher than the 

amount of endogenous FAM83H in wild-type U2OS cells (Fig. 8C). In FAM83H-/- U2OS cells, 

endogenous CK1e displayed similar immunostaining patterns to CK1a (fig. S7A) and displayed 

significant co-localization correlation with wild-type GFP-FAM83H but not the GFP-FAM83HD236A 

or GFP-FAM83HF270A mutants (fig. S7B). Overlapping fluorescence observed between CK1α 

immunostaining and mCherry-CK1α fluorescence (fig. S8A), and between CK1ε immunostaining 

and mCherry-CK1ε fluorescence (fig. S8B), confirmed the selectivity of the antibodies 

recognizing CK1α and CK1ε, respectively, for immunofluorescence applications. 

 

The intrinsic catalytic activity of CK1 is not affected by or required for the association of 
CK1 with FAM83 proteins 
Because they associate with CK1 isoforms, it is possible that the FAM83 members could be 

substrates of CK1 or affect the intrinsic kinase activity of CK1. We tested whether CK1a 

phosphorylated FAM83 proteins in vitro using purified proteins. Whereas recombinant FAM83B, 

FAM83C, and FAM83G were robustly phosphorylated by CK1a, the other FAM83 members 

were phosphorylated poorly (Fig. 9A). The precise CK1 phosphorylation sites on most FAM83 

proteins have not been mapped, and whether these phosphorylation events occur in cells and 

their potential functional consequences have not been investigated. The low activity of CK1a 

toward some of the FAM83 substrates in our in vitro kinase assay could reflect the poor purity of 

some of the recombinant FAM83 proteins (Fig. 9A) or their lack of any putative priming 

phosphorylation. The optimal CK1 phosphorylation motif is pS-x-x-S/T (13) . We previously 

showed that CK1a phosphorylates FAM83G only on Ser614 in vitro, but this phosphorylation 

event does not appear to affect function of FAM83G in Xenopus laevis embryos, which requires 

its association with CK1 (31).  

 

In order to test whether the intrinsic catalytic activity of CK1a was affected by its association 

with FAM83, we performed an in vitro CK1a kinase assay with increasing concentrations of an 
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optimized CK1 peptide substrate (CK1tide), and evaluated whether the addition of equimolar 

amounts of either wild-type FAM83G or a CK1-interaction–deficient FAM83G mutant (F296A, 

F300A) altered the rate of CK1a catalysis or its Michaelis constant (Km) toward the CK1tide 

substrate. The intrinsic CK1a catalytic activity against CK1tide was not significantly altered by 

the addition of either wild-type or the F296A, F300A mutant FAM83G at all CK1tide 

concentrations tested, suggesting that FAM83G does not affect the intrinsic kinase kinetics of 

CK1a (Fig. 9B). We also assessed whether the kinase activity of CK1a was required for its 

association with FAM83 members. For this, we transiently co-expressed GFP-FAM83E, GFP-

FAM83F, GFP-FAM83G, or GFP-FAM83H with either mCherry-tagged wild-type CK1a or the 

catalytically inactive mutant CK1aN141A (32) in U2OS cells and performed co-

immunoprecipitation assays. Equal amounts of both wild-type CK1a and the CK1aN141A mutant 

were detected in immunoprecipitates of FAM83E–H (Fig. 9C), suggesting that CK1 kinase 

activity is dispensable for the FAM83:CK1 interaction. 

 

 

Discussion 
 

The various CK1 isoforms are known to control a myriad of cellular processes, yet how their 

activities are regulated in cells remains poorly defined. In this report, we identified the FAM83 

family of proteins as interactors of the a, a-like, d, and e isoforms of CK1 in mammalian cells. 

This interaction was mediated through the conserved DUF1669 domain of FAM83 proteins, with 

different family members exhibiting distinct affinities and isoform-selectivity for CK1. FAM83 

proteins displayed unique subcellular distribution patterns that overlapped with the specific CK1 

isoforms with which they associate. Point mutations within the DUF1669 domains of FAM83 

proteins that abolished CK1 association disrupted not only the co-localization of FAM83 

members with specific CK1 isoforms in cells, but also the subcellular localization of the 

respective FAM83 members themselves. Our findings imply that the DUF1669 domains of 

FAM83 proteins anchor CK1 a, a-like, d, and e isoforms in specific subcellular compartments 

and potentially mediate their association with substrates, perhaps similar to the A-kinase 

anchoring proteins (AKAPs) that streamline signal transduction by bringing protein kinase A into 

close proximity of its substrates (26).  
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Unlike AKAPs, which bind to the regulatory domain of PKA, the DUF1669 domain of FAM83 

proteins appeared to associate directly with the kinase domain of CK1 isoforms and did so 

independently of CK1 catalytic activity. There are many other examples of the crucial roles that 

scaffolding and anchoring proteins play in organizing and streamlining signal transduction in 

cells (33-36). TPX2 (targeting protein for Xklp2) is a scaffold protein that recruits Aurora kinase 

A to the mitotic spindle and activates the kinase allosterically (37). However, FAM83G did not 

influence the intrinsic catalytic activity of CK1a in vitro. Because some FAM83 members were 

substrates for CK1 isoforms in vitro, future work will be required to establish whether there are 

roles for some FAM83 proteins as substrates of CK1 in cells. The DUF1669 domain contains a 

pseudo-PLD-like catalytic motif, yet FAM83 proteins do not exhibit phospholipase activity (5). 

Hence, there could very well be features within the DUF1669 domain that still harbour certain 

pseudo-PLD roles, such as binding to specific phospholipids, that might affect binding to CK1. 

Future work will aim to explain the specificity and affinity with which FAM83 members bind 

different CK1 isoforms. 

 

Precisely how FAM83 members impact the diverse functions of CK1 isoforms in cells is largely 

unclear, but we are beginning to uncover some of these roles. We have established that 

FAM83G is a critical mediator of Wnt signalling in human cells and Xenopus embryos (31). 

Crucially, we showed that unlike wild-type FAM83G, two mutants incapable of interacting with 

CK1a are unable to activate Wnt signalling or induce axis duplication in Xenopus embryos (31). 

Similarly, a recent report suggested that FAM83H and the DNA binding protein SON recruit CK1 

to nuclear speckles (38). From our proteomic data, it is evident that each FAM83 member 

interacts with unique proteins in addition to the CK1 isoforms. Future investigations will establish 

whether FAM83 proteins individually recruit distinct sets of substrates to specific CK1 isoforms. 

Furthermore, by controlling the localization of CK1 isoforms, different FAM83 proteins might be 

primed to streamline diverse signal transduction processes downstream of CK1. Future efforts 

will aim to establish precisely which CK1 substrates are affected by individual FAM83 members. 

Additionally, global phosphoproteomic approaches in cells devoid of individual FAM83 members 

generated by genome editing techniques will identify potential substrate maps for CK1 isoforms. 

 

Given the involvement of CK1 isoforms in a wide range of cellular processes, it is no surprise 

that their misregulation has been linked to cancers and neurological disorders (15, 22). The 

pleiotropic nature of CK1 function in regulating many cellular processes, combined with poor 

understanding of its regulation, has limited the exploration of CK1 for therapeutics. Nonetheless, 
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several potent inhibitors of individual CK1 isoforms have been developed, including CKI-7, 

IC261, D4476, PF-670462 and PF-4800567, although all suffer from selectivity issues, with off-

target effects related to their inhibition of other CK1 isoforms and protein kinases (39-43). Our 

findings clearly place the FAM83 proteins at the helm of CK1 regulation in cells. Therefore, 

understanding the molecular bases for FAM83:CK1 associations may provide us with unique 

opportunities to target and disrupt this association with small molecules, which could prove to be 

useful in targeting specific CK1 isoforms in specific cellular compartments. 

 

In light of our data that clearly demonstrates that the DUF1669 domain is responsible for 

facilitating the interaction between FAM83 members and CK1 isoforms, we propose that the 

DUF1669 domain be renamed polypeptide anchor of CK1 (PACK1) domain. Co-crystallization 

of the PACK1 domain with CK1 isoforms will potentially reveal the determinants of CK1 

interaction specificity and affinity for each FAM83 member.     

 
Materials and Methods 
 
Plasmids 
Recombinant DNA procedures were performed using standard protocols as described 

previously (2, 44). Human FAM83A-H and CK1 wild-type genes or appropriate mutants were 

sub-cloned into pcDNA5-FRT/TO vectors with a Green Fluorescence Protein (GFP) tag at either 

the N- or the C-terminus, or an mCherry tag at the N-terminus. All constructs are available to 

request from the MRC-PPU reagents webpage (http://mrcppureagents.dundee.ac.uk) and the 

unique identifier (DU) numbers indicated above provide direct links to the cloning strategy and 

sequence information. The following constructs were generated: pcDNA5-FRT/TO GFP-

FAM83A (DU44235), pcDNA5-FRT/TO GFP-FAM83B (DU44236), pcDNA5-FRT/TO GFP-

FAM83C (DU42473), pcDNA5-FRT/TO GFP-FAM83D (DU42446), pcDNA5-FRT/TO GFP-

FAM83E (DU44237), pcDNA5-FRT/TO GFP-FAM83F (DU44238), pcDNA5-FRT/TO GFP-

FAM83G (DU33272), pcDNA5-FRT/TO GFP-FAM83H (DU44239), pcDNA5-FRT/TO GFP-

FAM83C (D259A) (DU28479), pcDNA5-FRT/TO GFP-FAM83C (F293A) (DU28480), pcDNA5-

FRT/TO GFP-FAM83E (D243A) (DU28481), pcDNA5-FRT/TO GFP-FAM83E (F277A) 

(DU28482), pcDNA5-FRT/TO GFP-FAM83F (D250A) (DU28268), pcDNA5-FRT/TO GFP-

FAM83F (F284A) (DU28488), pcDNA5-FRT/TO GFP-FAM83G (D262A) (DU28476), pcDNA5-

FRT/TO GFP-FAM83G (F296A) (DU28477), pcDNA5-FRT/TO GFP-FAM83H (D236A) 

(DU28428), pcDNA5-FRT/TO GFP-FAM83H (F270A) (DU28487), pcDNA5-FRT/TO mCherry-
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CK1α (DU28407), pcDNA5-FRT/TO mCherry-CK1α (N141A) (DU28839), pcDNA5-FRT/TO 

GFP-FAM83H(M1-L284)-FAM83G(S311-P823) (DU28683), pcDNA5-FRT/TO GFP-

FAM83G(M1-V310)-FAM83H(V285-K1179) (DU28688), pcDNA5-FRT/TO FAM83A-GFP 

(DU42864), pcDNA5-FRT/TO FAM83B-GFP (DU42833), pcDNA5-FRT/TO FAM83C-GFP 

(DU42825), pcDNA5-FRT/TO FAM83D-GFP (DU42835), pcDNA5-FRT/TO FAM83E-GFP 

(DU42826), pcDNA5-FRT/TO FAM83F-GFP (DU42832), pcDNA5-FRT/TO FAM83G-GFP 

(DU42816), pcDNA5-FRT/TO FAM83H-GFP (DU42865), pcDNA5-FRT/TO GFP only 

(DU41455), pcDNA5-FRT/TO GFP-FAM83H (F274A) (DU28658), pcDNA5-FRT/TO GFP-

FAM83H (F270, 274A) (DU28182), pcDNA5-FRT/TO FLAG-FAM83G (DU33274), pcDNA5-

FRT/TO FLAG-FAM83G (F296A) (DU28024), pcDNA5-FRT/TO FLAG-FAM83G (F296A, 

F300A) (DU28026), pcDNA5-FRT/TO FLAG-FAM83G (F300A) (DU28025), pCS2+ HA-CK1α 

(DU28216), pCMV5-FLAG TTBK2 (DU19028), pCMV-FLAG-CK1γ (DU5580), pCS2+ HA CK1δ 

(DU28189), pcDNA5-FRT/TO mcherry-CK1ε (DU28406). Myc-xFAM83G (Xenopus laevis 

FAM83G) constructs have been described previously (28). For CRISPR/Cas9 gene editing, 

pBABED P U6 FAM83H KO sense gRNA (DU52010), pX335-CAS9-D10A FAM83H KO 

antisense gRNA (DU52026), pBABED P U6 FAM83G KI sense gRNA (DU48528), pX335-Cas9-

D10A FAM83G KI antisense gRNA (DU48529), pEX-K4 FAM83G Cter GFP donor (DU48585), 

pBABED P U6 FAM83B KI sense gRNA (DU54494), pX335-Cas9-D10A FAM83B KI antisense 

gRNA (DU54504), and pEX-K4 FAM83B Nter GFP donor (DU54547) were generated. 

Constructs were sequence-verified by the DNA Sequencing Service, University of Dundee 

(http://www.dnaseq.co.uk). For plasmid amplification, 1 μl of the plasmid was transformed into 

10 μl of E. coli DH5α competent bacteria (Invitrogen) on ice, incubated at 42°C for 45 s, then on 

ice for 2 min, before plating on LB-agar medium plate containing 100 μg/ml ampicillin. Plates 

were inverted and incubated for 16 h at 37°C. A single colony was picked and used to inoculate 

250 ml of LB medium containing 100 μg/ml ampicillin, and cultures were grown for 18 h at 37°C 

in a shaker (Infors HT). Plasmid DNA was purified using a Qiagen midi-prep kit as per the 

manufacturer’s instructions. The isolated DNA yield was subsequently analysed using a 

Nanodrop 1000 spectrophotometer (Thermo Scientific).  

 
Antibodies 
Rabbit anti-GAPDH (cat.: 2118, 1:5000), anti-CK1δ (cat.: 12417S, 1:1000), and anti-CK1ε (cat.: 

12448, 1:1000) were from Cell Signalling Technology (CST). Rat anti-GFP for detection of 

endogenous GFP tags was from Chromotek (cat.: 3H9, 1:1000). Anti-CK1α (cat.: A301-991A, 

1:1000 for immunoblotting, 5 µg antibody/mg of cell extract protein for immunoprecipitation) and 
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anti-FAM83H (cat.: A304-327A, 1:1000) were from Bethyl. Anti-DYNLL1 (EP1660Y, 1:1000) and 

anti-FAM83B (cat.: 153829, 1:1000) were from Abcam. Anti-HMMR (cat.: ABC323, 1:1000) was 

from Millipore. Sheep anti-PAWS1/FAM83G (S876C, 3rd bleed, 1:1000), anti-FAM83H (SA273, 

4th bleed, 1:1000), anti-GFP (S268B, 2nd bleed, 1:1000) and anti-SMAD1 (S618C, 3rd bleed, 

1:1000) were generated by the Division of Signal Transduction Therapy (DSTT), University of 

Dundee (2, 45). anti-FLAG M2-Peroxidase (HRP) (cat.: A8592, 1:2000) and anti-c-Myc-HRP 

(cat.: A5598, 1:2000) were from Sigma and Anti-HA-HRP (cat.: 11667475001, 1:2000) was from 

Roche. For HRP-coupled secondary antibodies, goat anti-rabbit-IgG (cat.: 7074, 1:2500) was 

from CST, rabbit anti-sheep-IgG (cat.: 31480, 1:5000), goat anti-rat IgG (cat.: 62-9520, 1:5000) 

and goat anti-mouse-IgG (cat.: 31430, 1:5000) were from Thermo Fisher. For 

Immunofluorescence, anti-CK1-alpha (C-19 Santa Cruz Biotechnology, 1:100) and anti-CK1-

epsilon (HPA026288 Sigma, 1:500) were used. For signal amplification, AlexaFluor-594 donkey 

anti-goat IgG (H+L) (A11058 Life Technologies, 1:300), AlexaFluor-594 goat anti-rabbit IgG 

(H+L) (A11012 Invitrogen™ Molecular Probes™, 1:500) and AlexaFluor-488 donkey anti-rabbit 

IgG (H+L) (A21206, Life Technologies, 1:500) were employed. 

 

Cell Culture 
Human osteosarcoma U2OS, human embryonic kidney HEK 293, human keratinocyte HaCaT, 

Flp-In T-Rex U2OS and HEK 293, and retroviral production HEK 293(FT) cell lines were grown 

in Dulbecco’s Modified Eagles Medium (DMEM; Gibco) containing 10% (v/v) Foetal Bovine 

Serum (FBS; Hyclone), penicillin (100 U/ml; Lonza), streptomycin (0.1 mg/ml; Lonza) and L-

glutamine (2 mM; Lonza), and cultured at 37°C, 5% CO2 in a humidified incubator. For transient 

transfections, cells were transfected for 24 h with 2 μg (per 10 cm-dish), or 500 ng (per 6-well 

dish with coverslips) cDNA, in serum free OptiMem (Gibco) with the transfection reagent 

polyethylenimine (PEI) as described previously (44). Where applicable, Tet-inducible expression 

was achieved by adding doxycycline (20 ng/ml) for up to 24 h prior to cell lysis as indicated. 

 
Generation of Stable Flp-In T-Rex Cell Lines 
The Flp-In T-Rex U2OS or HEK 293 cells were transfected with the N- or C-terminal GFP-

tagged FAM83A-H or GFP alone packaged into a pcDNA5-FRT/TO vector, together with the Flp 

recombinase pOG44 (Invitrogen) in a ratio of 1 μg : 9 μg as described previously (2, 46). Briefly, 

plasmids were diluted in 1 ml OptiMem (Gibco), 20 μl of 1 mg/ml polyethylenimine (PEI) was 

added, the mix vortexed and left at room temperature for 15 min and added dropwise to 10 cm 

dish of target cells in 10 ml complete medium. 24 h post-transfection, cells were selected in 
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media containing hygromycin (50 μg/ml) and blasticidin (15 µg/ml). Resistant cells were grown 

up to confluency, tested for doxycycline-induced expression of GFP-tagged proteins and used in 

subsequent experiments. 

 

Generation of FAM83GGFP/GFP and GFP/GFPFAM83B knock-in cells using CRISPR/Cas9 
U2OS and HaCaT cells were transfected with vectors encoding a pair of guide RNAs (pBABED-

Puro-sgRNA1 and pX335-Cas9-D10A-sgRNA2) targeting around the stop codon of FAM83G 

and the start codon of FAM83B (1 μg each), along with the respective donor plasmids carrying 

the GFP knockin insert and flanking homology arms (~500 bases) (3 μg each). 16 h post-

transfection, cells were selected in puromycin (2 µg/ml) for 2 days. The transfection process 

was repeated one more time. GFP-positive cells were isolated by fluorescence-activated cell 

sorting (FACS) and single GFP-positive cell clones were plated on individual wells of two 96-

well plates, pre-coated with 1% (w/v) gelatin as described previously (45). Viable clones were 

expanded, and the integration of GFP at the target locus was confirmed by Western blotting and 

genomic sequencing of the targeted locus. The DU identifier numbers for the plasmids listed 

above link to the sequences for gRNA and donors with homology arms for each target. 

 

Generation of FAM83G-/- and FAM83H-/- cells using CRISPR/Cas9 
CRISPR/Cas9 mediated deletion of FAM83G in U2OS cells was performed using Cas9 and a 

single gRNA targeting approach to delete exon 2 of the RefSeq gene for FAM83G 

(NM_001039999.2). Vectors containing the Cas9 and FAM83G targeting gRNA 

(ggaccgctccatcccgcagctgg) were transfected into 1x106 U2OS cells followed by selection with 2 

ug/ml puromycin. Single cell sorting was used to isolate clone candidates, which were screened 

with Western blotting and confirmed by genomic sequencing. For FAM83H, U2OS cells were 

transfected with vectors encoding a pair of guide RNAs (pBABED-Puro-sgRNA1 and pX335-

Cas9-D10A-sgRNA2) targeting the second exon of FAM83H (1 μg each). 16 h post-transfection, 

cells were selected in puromycin (2 µg/ml) for 2 days. The transfection process was repeated 

one more time. Cells were isolated by single-cell sorting and isolated clones were plated on 

individual wells of two 96-well plates, pre-coated with 1% (w/v) gelatin as described previously 

(45). Viable clones were expanded and successful knockout of FAM83H was confirmed by 

Western blotting and genomic sequencing of the targeted locus. The DU identifier numbers for 

the plasmids listed above link the sequences for gRNA for each target. 

 
Cell Lysis and Immunoprecipitation 
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Cells were washed twice in ice-cold phosphate-buffered saline (PBS), before scraping on ice in 

lysis buffer (50 mM Tris-HCl pH 7.5, 0.27 M sucrose, 150 mM NaCl, 1 mM EGTA, 1 mM EDTA, 

1 mM sodium orthovanadate, 10 mM sodium β-glycerophosphate, 50 mM sodium fluoride, 5 

mM sodium pyrophosphate, and 1% Nonidet P40 substitute), supplemented with 1X protease 

inhibitor cocktail (Roche). Cell extracts were either cleared and processed immediately, or snap 

frozen in liquid nitrogen, before storing at -80°C. Protein concentrations were determined in a 

96-well format using Bradford protein assay reagent (Pierce). 

 

For immunoprecipitation, clarified extracts were diluted in lysis buffer to 1-5 mg/ml. Input 

aliquots were taken, and lysates were incubated overnight at 4°C with protein G-sepharose 

beads coupled to the antibody of interest, on a rotating wheel. For anti-GFP 

immunoprecipitations, GFP-TRAP A beads (Chromotek) were used; for anti-FLAG 

immunoprecipitations, anti-FLAG M2 affinity agarose gel (Sigma) were used. Following the 

incubation period, beads were pelleted and flow-through extracts collected. Beads were washed 

once in lysis buffer supplemented with 250 mM NaCl and 2-3 times in lysis buffer. Beads were 

eluted in 1X SDS sample buffer, at 95°C for 5 min. 

 

For immunoprecipitations for mass-spectrometry, cells were lysed in DSP crosslinking lysis 

buffer (40 mM HEPES pH 7.4, 120 mM NaCl, 1 mM EDTA, 10 mM sodium pyrophosphate, 50 

mM sodium fluoride, 1.5 mM sodium orthovanadate, 1% (v/v) triton, 1X protease inhibitor 

cocktail (Roche), and 2.5 mg/ml DSP as described previously (2). Following lysis, lysates were 

incubated for 30 mins at 4°C, before quenching the crosslinking reaction by adding 1 M Tris-HCl 

pH 7.4 in a ratio of 1:4 and incubating at 4°C for a further 30 min. Lysates were clarified by 

centrifugation at 15000 rpm for 20 min and filtered through 0.45 μM filters (BioRad). Extracts 

were pre-cleared by incubating with Protein-G sepharose beads for 1 h at 4°C on a rotating 

wheel. Pre-cleared lysates were quantified using the Bradford method, and extracts incubated 

with GFP-TRAP A beads (Chromotek) for 4 h at 4°C on a rotating wheel. Input and post-

immunoprecipitation extract aliquots were taken for control blots. Beads were washed twice in 

lysis buffer supplemented with 250 mM NaCl, and three times in lysis buffer. 1X SDS sample 

buffer containing 0.1 M DTT was added to the beads (~50% slurry), and samples incubated at 

37°C for 1 h. Samples were then boiled at 95°C for 5 min and eluted through SpinX columns 

(Corning). 

 
Mass Spectrometry 
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The expression of GFP-tagged FAM83 proteins in stable Flp-In T-Rex HEK 293 and U2OS cells 

was induced with 20 ng/ml doxycycline for 24 h prior to lysis. Proteins were affinity purified from 

clarified extracts by GFP-TRAP A beads (ChromoTek) as described above. Purified proteins 

were resolved by 4-12% gradient SDS-PAGE, the gels were stained with Instant blue and gel 

slices covering each lane were excised and trypsin digested. The peptides were subjected to 

mass spectrometric analysis performed by LC-MS-MS on a Linear ion trap-orbitrap hybrid mass 

spectrometer (Orbitrap-VelosPro, Thermo) coupled to a U3000 RSLC Hplc (Thermo). Peptides 

were trapped on a nanoViper Trap column, 2 cm x 100 µm C18 5 µm 100 Å (Thermo, 164564) 

then separated on a 15 cm Thermo EasySpray column (ES800) equilibrated with a flow of 300 

nl/min of 3% Solvent B. [Solvent A: 2% Acetonitrile, 0.1% formic acid, 3% DMSO in H2O; 

Solvent B: 80% acetonitrile, 0.08% formic acid, 3% DMSO in H2O]. The elution gradient was as 

follows; Time (min):Solvent B (%); 0:3, 5:3, 45:35, 47:99, 52:99, 55:3, 60:3. Data were acquired 

in the data-dependent mode, automatically switching between MS and MS-MS acquisition. Full 

scan spectra (m/z 400-1600) were acquired in the orbitrap with resolution R = 60,000 at m/z 400 

(after accumulation to an FTMS Full AGC Target; 1,000,000; FTMS MSn AGC Target; 50,000). 

The 20 most intense ions, above a specified minimum signal threshold (2,000), based upon a 

low resolution (R=15,000) preview of the survey scan, were fragmented by collision induced 

dissociation and recorded in the linear ion trap (Full AGC Target; 30,000. MSn AGC Target; 

5,000). Data files were analysed by Proteome Discoverer 2.0 (www.ThermoScientific.com), 

using Mascot 2.4.1 (www.matrixscience.com), and searching the SwissProt Human database. 

Scaffold Q/Q+S V4.4.7 (www.ProteomeSoftware.com) was also used to examine the Mascot 

result files. Allowance was made for the following fixed, Carbamidomethyl (C), and variable 

modifications, Oxidation (M), Dioxidation (M). Error tolerances were 10 ppm for MS1 and 0.6 Da 

for MS2. Scaffold Q/Q+S V4.3 (U2OS) or V4.4.6 (HEK 293) (www.ProteomeSoftware.com) was 

used to further analyse the data and obtain values for the Top 3 precursor ion intensities of each 

protein. 

 

SDS-PAGE and Western Blotting 
Reduced protein extracts (10–20 μg protein) or immunoprecipitates were resolved on either 8% 

(v/v) SDS-PAGE gels, or 4-12% NuPAGE bis-tris precast gradient gels (Invitrogen) by 

electrophoresis. Separated proteins were subsequently transferred onto polyvinylidene fluoride 

(PVDF) membranes (Millipore), before membranes were blocked in 5% (w/v) non-fat milk 

powder (Marvel) in TBS-T (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.2% (v/v) Tween-20) and 

incubated overnight at 4°C in 5% milk TBS-T or 5% bovine serum albumin (BSA) TBS-T with 
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the appropriate primary antibody. Membranes were then washed 3 X 10 min with TBS-T before 

incubating with HRP-conjugated secondary antibodies in 5% milk TBS-T for 1 h at room 

temperature. Membranes were then washed 3 X 10 min with TBS-T before detection with 

enhanced chemiluminescence reagent (Millipore) and exposure to medical-grade X-ray films 

(Konica Minolta), as described previously (2, 47, 48).   

 

Fluorescence microscopy  
Cells were plated on glass coverslips and treated/transfected as described above. Cells were 

washed twice in PBS, before being fixed either with methanol at -20°C for 2 min or 4% (w/v) 

paraformaldehyde (PFA) in 200 mM HEPES pH 7.4 for 20 min at RT. Cells fixed in methanol 

were washed three times in ice cold PBS after fixation, then blocked in 3% BSA/PBS + 0.01% 

Tween 20 on ice for 30 min. Cells fixed in PFA were washed twice with DMEM/10 mM HEPES 

followed by incubation in DMEM/10 mM HEPES for 10 min at RT. Cells fixed in PFA were 

washed once in PBS and permeabilised for 3 min in 1.5 ml 0.2% NP40. Cells were then washed 

twice in PBS containing 1-3% (w/v) BSA, followed by incubation in PBS/BSA for 15 min. Where 

appropriate, coverslips were then incubated with primary antibody in PBS/BSA (typically at 1:50-

1:500 dilution as stated) at 30-37°C for 1-1.5 h. Cells were washed for a minimum of 3 X 10 min 

in PBS/BSA (PFA-fixed cells) or 3 X 5 min in PBS (methanol-fixed cells) on shaker. Coverslips 

were incubated with secondary Alexa-Fluor conjugated antibody in PBS/BSA (1:300-500 

dilution) and DAPI (1:500) for 30 to 60 min at RT in the dark. Coverslips were then washed for 3 

X 10 min in PBS/BSA (PFA-fixed cells) or 3 X 5 min in PBS (methanol-fixed cells), and mounted 

on glass microscopy slides using either ProLong® Gold anti-fade reagent with DAPI (Life 

Technologies) (if DAPI staining was not performed previously), or mounted using 

VECTASHIELD mounting solution (Vector Labs). Coverslips were sealed with clear nail varnish 

and left to dry overnight before imaging on either a Nikon TiS inverted microscope, or a 

DeltaVision Imaging Systems (GE Healthcare). Images were processed using either NIS 

Elements (Nikon) and Adobe Photoshop, or softWoRx (GE Healthcare) and Omero (49). 

 

Colocalization was assessed using the Pearson’s correlation coefficient (PCC) as a measure of 

intensity correlation between the two channels. As explained by Adler and Parmryd (50), PCC is 

sensitive to the inclusion of background pixels. We therefore excluded background pixels by 

auto-thresholding each channel in the cytoplasmic region of interest using Otsu’s method (51). 

Thresholding and PCC calculation were implemented in an ImageJ macro developed by G. Ball 

(Dundee) and is included as a Supplementary File (File S1). 
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In vitro kinase assays 
25 µl reactions were set up using 200 ng of kinase (GST-CK1α), 2 µg of substrate (GST-

FAM83A, C, D, E, F, or H, MBP-tagged FAM83B, or GST-FAM83G-6XHis in a buffer containing 

50 mM Tris pH 7.5, 0.1 mM EGTA, 10 mM Magnesium acetate, 2 mM DTT and 0.1 mM [γ32P]-

ATP (~500 cpm/pmol). Assays were performed at 30°C for 30 min and stopped by addition of 9 

μl of 4xSDS sample buffer with 5% β-mercaptoethanol and heating at 95°C for 5 min. The 

samples were resolved by SDS-PAGE and the gels were stained with Instant blue (Expedeon) 

and dried. Radioactivity was analysed by autoradiography. For peptide-based kinase assays, 

reactions were set up and performed as described previously (52), using an optimised CK1 

peptide substrate (CK1tide (KRRRALS*VASLPGL), where S* indicates phosphoserine). Assays 

were performed in triplicates. 

 

Protein expression and purification 
The DUF1669 domain of FAM83A (a.a. 122-304) and the kinase domain of human CK1ε (a.a. 

1-294) were expressed separately in E. coli strain BL21(DE3) R3-pRARE2 using the pNIC28-

Bsa4 vector, which encodes for a N-terminal hexahistidine (6XHis) tag and TEV cleavage site. 

Cultures were grown at 37°C in LB medium supplemented with 50 μg/mL kanamycin and 34 

μg/mL chloramphenicol to an OD of 0.6, before expression at 18°C overnight by induction with 

0.4 mM isopropyl 1-thio-β-D-galactopyranoside. Cells were harvested by centrifugation at 5000 

g and pellets resuspended in binding buffer (50 mM HEPES pH 7.5, 500 mM NaCl, 5% glycerol, 

5 mM imidazole) supplemented with Calbiochem protease inhibitor set III. Cells were lysed by 

sonication before clarification of the lysate by centrifugation in a JA 25.50 rotor at 36,000 g. His-

tagged proteins were immobilized on Ni-sepharose and bound proteins were eluted using step 

gradients of imidazole (50-250 mM). CK1ε protein was cleaved with TEV protease overnight at 

4°C and both 6xHis-FAM83A and CK1ε were purified further by size exclusion chromatography 

using an S75 HiLoad 16/60 Superdex column equilibrated in buffer containing 50 mM HEPES 

pH 7.5, 300 mM NaCl, and 0.5 mM TCEP. Proteins were concentrated by centrifugal 

ultrafiltration using a 3 kDa molecular weight cut-off concentrator. Protein concentrations were 

determined by measuring absorbance at 280 nm. Protein purity of >95% was confirmed by 

SDS-PAGE and construct identities and tag cleavage were verified by mass spectrometry. 

 

All other recombinant proteins used in the in vitro kinase assays were purified by the Division of 

Signal Transduction Therapy (DSTT; University of Dundee) and the identities of the expressed 
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proteins verified by mass spectrometry. Each protein has a unique identification number to 

request from the MRC-PPU Reagents website (http://mrcppureagents.dundee.ac.uk) as follows: 

GST-CK1α (DU329),GST-FAM83A (DU24611), GST-FAM83C (DU28269), GST-FAM83D 

(DU28270), GST-FAM83E (DU28271), GST-FAM83F (DU28272), GST-FAM83H (DU28403) 

and GST-FAM83G (F296A, F300A) (DU28049). Briefly, the proteins were expressed in 

BL21(DE3) E. coli as described above and affinity purified using GSH-sepharose, Amylose-

sepharose or Nickel-agarose columns as appropriate. 

 

In vitro binding assay 
For the in vitro binding assay, all proteins and Ni-sepharose were equilibrated in binding buffer 

(50 mM HEPES pH 7.5, 500 mM NaCl, 5% glycerol, 5 mM imidazole) prior to use. 300 μg 

6xHis-FAM83A (aa122-304) was immobilised onto 200 μl Ni-sepharose and washed before 

addition of 100 μg CK1ε. The Ni-sepharose was then washed with binding buffer and the flow 

through collected. Two 1 ml wash steps were performed using binding buffer before bound 

proteins were eluted with 1 ml binding buffer supplemented with 250 mM Imidazole. Fractions 

were run on a SDS-PAGE gel alongside the original protein solutions for molecular weight 

reference. 

 

Statistical Analysis 
For kinase assays, GraphPad (Prism) was used to generate plots and analyse data by two-way 

ANOVA and Tukey test to determine statistical significance, from 3 independent experiments, 

each containing 3 replicates. A p-value of <0.05 was deemed significant. For co-localization 

studies, GraphPad (Prism) was used to generate boxplots and analyze data by one-way 

ANOVA and Dunnett’s multiple comparison test to determine statistical significance. A p-value 

of <0.05 was deemed significant. 

 
Supplementary Materials 
Fig. S1: Sequence alignment of the DUF1669 domain of the FAM83 proteins. 

Fig. S2: Coomassie images of GFP-TRAP immunoprecipitations of FAM83A-H proteins used to 

identify interacting partners by mass spectrometry 

Fig. S3: Immunoblots of controls for Figure 2 

Fig. S4: FAM83G interacts with CK1α, but not CK1γ or TTBK1 

Fig. S5: CK1-specificity switch with DUF1669 chimera 

Fig. S6: Fluorescence images of GFP and mCherry-CK1a controls 
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Fig. S7: FAM83H co-localizes with and contributes to the subcellular localization of endogenous 

CK1ε 

Fig. S8: Validation of CK1a and CK1e antibodies for immunofluorescence applications 

File S1: Supplemental ImageJ Macro for quantification of co-localization in cells. 
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Figure Legends 
 
Fig. 1: Generation of HEK 293 and U2OS cells for tetracycline-inducible expression of 
FAM83 proteins. A. Schematic representation of the human FAM83 family of proteins and the 

conserved domain of unknown function, DUF1669, that characterises them. B. A single copy of 

each FAM83 gene (A–H) tagged with GFP at the N-terminus was stably inserted downstream of 

a tetracycline-inducible promoter in HEK 293 cells. Cells were treated with doxycycline and 

lysed at the indicated times after treatment. Extracts were resolved by SDS-PAGE and 

subjected to immunoblotting (IB) for GFP. ERK1 and ERK2 (ERK1/2) and GAPDH are loading 

controls. This blot is representative of 2 independent experiments.  C. A single copy of each 

FAM83 gene (A–H) tagged with GFP at the C-terminus was stably inserted downstream of a 

tetracycline-inducible promoter in U2OS cells. Extracts of doxycycline-induced cells were 

immunoblotted for GFP and the loading control GAPDH. FAM83B is not included on the blot 

because we were unable to detect FAM83B-GFP expression in U2OS cells. This blot is 

representative of 2 independent experiments. 

 

Fig. 2: FAM83 proteins interact with CK1 isoforms. A. Mass fingerprinting of protein 

interactors of FAM83A–H proteins tagged N-terminally (HEK 293 cells) or C-terminally (U2OS 

cells) with GFP (fig. S2, A and B) identified one or more CK1 isoforms. These tables show the 

values for the top 3 precursor ion intensities of the indicated CK1 isoforms pulled down with 

each GFP-FAM83 protein (A–H) expressed in HEK 293 cells and each FAM83-GFP protein (A–

H) expressed in U2OS cells. GFP expressed in each cell line was a negative control. Scaffold 

Q/Q+S V4.4.6 was used for analysis of the LC-MS/MS data from HEK 293 cells, and scaffold 

V4.3 was used for analysis of the LC-MS-MS data from U2OS cells. FAM83B-GFP did not 

express in U2OS cells. B. GFP Immunoprecipitates (IP) of GFP control or GFP-FAM83A–H 

proteins expressed in HEK 293 cells were immunoblotted (IB) with antibodies recognizing the 

indicated CK1 isoforms and other proteins known to interact with FAM83 family proteins. Short 

Exp., short exposure; Long Exp., long exposure. C. Extracts of wild-type (WT) or GFP-FAM83B 

knockin (GFP/GFPFAM83B) HaCaT cells were immunoprecipitated with GFP-TRAP A beads and 

immunoblotted to detect the indicated CK1 isoforms. GAPDH was used as a loading control. FT, 

flow through. D. As in C., except that proteins were immunoprecipitated from WT and FAM83G-

GFP knockin (FAM83GGFP/GFP) U2OS cell extracts. E. U2OS extracts were immunoprecipitated 

using either pre-immune IgG or an antibody recognizing CK1a coupled to Protein-G sepharose 
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beads and immunoblotted with antibodies recognizing the indicated FAM83 proteins and 

GAPDH. All blots are representative of 3 independent experiments. 

 

Fig. 3:  The DUF1669 domain is sufficient to mediate the interaction of FAM83 proteins 
with CK1. A. The indicated fragments of Myc-tagged Xenopus laevis FAM83G (Myc-xFAM83G) 

were co-expressed with HA-CK1a in FAM83G-/- U2OS cells, and then cell extracts or HA 

immunoprecipitates were subjected to immunoblotting (IB) with antibodies recognizing Myc or 

HA as indicated. This blot is representative of 3 independent experiments. B. A His-tagged 

fragment of FAM83A (amino acids122-304), which contains the DUF1669 and PLD-like 

domains, was mixed with recombinant CK1ε kinase domain (amino acids 1-294) in vitro. His-

FAM83A(122-304) was then pulled down using Ni-sepharose (Ni2+) resin, which was washed 

twice before elution. The input, unbound flow-through (FT), wash solutions (W1 and W2), and 

eluate (E) were analysed by SDS-PAGE and stained with Coomassie blue. This gel is 

representative of 3 independent experiments. C. Empty Flag vector (ctrl) or the indicated FLAG-

FAM83G mutant and wild-type (WT) proteins were overexpressed in FAM83G-/- U2OS cells. 

Cell extracts (input) and FLAG immunoprecipitates (IP) were subjected to immunoblotting for 

FLAG, CK1a, or GAPDH as indicated. This blot is representative of 3 independent experiments. 

D. WT and Phe®Ala (FA) and Asp®Ala (DA) mutant forms of GFP-FAM83E–H were transiently 

expressed in U2OS cells, immunoprecipitated (IP) from cell extracts with a GFP-specific 

antibody, and immunoblotted for GFP, CK1α, and CK1ε as indicated. This blot is representative 

of 3 independent experiments. 

 
Fig. 4: FAM83 proteins and CK1a colocalize in cells. U2OS cells stably integrated with Tet-

inducible expression of GFP-FAM83A–H were transfected with mCherry-CK1a. Cells were 

processed for fluorescence microscopy following 24h of doxycycline treatment. DNA was 

stained with DAPI. Images from one field of view representative of 3 independent experiments 

are shown. The number of cells that displayed staining patterns identical to the representative 

image were documented for each experiment: GFP-FAM83A (n=50); GFP-FAM83B (n=31); 

GFP-FAM83C (n=37); GFP-FAM83D (n=32); GFP-FAM83E (n=55); GFP-FAM83F (n=44); 

GFP-FAM83G (n=43); GFP-FAM83H (n=32). Fluorescence images for GFP-alone and 

mCherry-CK1a alone expressing cells are included in fig. S6. Scale bar, 20 µM. 

 

Fig. 5: FAM83 proteins colocalize with endogenous CK1a in cells.  



	 30	

U2OS cells stably integrated with Tet-inducible expression of GFP, GFP-FAM83B, GFP-

FAM83F, or GFP-FAM83H were treated with doxycycline for 16 h prior to processing cells for 

fluorescence microscopy to detect GFP and endogenous CK1a (anti- CK1a). DNA was stained 

with DAPI. Images from one field of view representative of three independent experiments are 

shown. The number of cells displaying staining patterns identical to the representative image 

were documented for each experiment: GFP-FAM83B (n=56); GFP-FAM83F (n=60); GFP-

FAM83H (n=48); GFP only (n=38); no transgene (n=82). Scale bars, 20 µm. 
 

Fig. 6: The association between FAM83 proteins and specific CK1 isoforms is selective in 
cells. A. U2OS cells stably integrated with Tet-inducible expression of GFP-FAM83F or GFP-

FAM83H were transfected with either mCherry-CK1a (a) or mCherry-CK1e (e). GFP-FAM83F 

and GFP-FAM83H expression was induced with doxycycline for 24 h prior to processing cells 

for fluorescence microscopy. DNA was stained with DAPI. Images from one field of view 

representative of three independent experiments are included. The number of cells that 

displayed staining patterns identical to the representative image were documented for each 

experiment: GFP-FAM83F + mCherry-CK1a (n=44); GFP-FAM83F + mCherry-CK1e (n=40); 

GFP-FAM83H + mcherry-CK1a (n=32); GFP-FAM83H + mCherry-CK1e (n=40). Scale bar, 20 

µm. B. U2OS cells stably integrated with Tet-inducible expression of GFP-FAM83F or GFP-

FAM83H were induced with doxycycline for 16 h prior to processing cells for fluorescence 

microscopy with CK1a (a) or CK1e (e) antibodies. Untransfected cells stained with CK1a or 

CK1e antibodies were used as negative controls. Images from one field of view representative 

of three independent experiments are shown. The number of cells that displayed staining 

patterns identical to the representative image were documented for each experiment: GFP-

FAM83F with CK1a (n=60); GFP-FAM83F with CK1e (n=43); GFP-FAM83H with CK1a (n=48); 

GFP-FAM83H with CK1e (n=35); no transgene with CK1a (n=82); no transgene with CK1e 

(n=27).  Scale bars, 20 µm. 
 

Fig. 7: Association with CK1 determines the subcellular localization of FAM83C. A. U2OS 

cells were cotransfected with plasmids encoding either GFP, GFP-FAM83C (WT), GFP-

FAM83C(F293A) (FA), or GFP-FAM83C(D259A) (DA) plus a plasmid encoding HA-CK1a. 

Untransfected (UT) cells and cells transfected only with HA-CK1a were included as controls. 

Cell extracts (Input) or GFP-TRAP A Immunoprecipitates (IP) were immunoblotted (IB) with 

antibodies recognizing GFP and CK1a. a-Tubulin was used as a loading control. This blot is 
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representative of 3 independent experiments. B. U2OS cells were transfected with plasmids 

encoding GFP-FAM83C, GFP-FAM83C(F293A), or GFP-FAM83C(D259A), together with 

mCherry-CK1a. Cells expressing GFP-FAM83C or mCherry-CK1a alone are negative controls. 

Cells were processed 24 h after transfection for fluorescence microscopy. DNA was stained with 

DAPI. Images from one field of view representative of three independent experiments are 

shown. The number of cells which displayed staining patterns identical to the representative 

image were documented for each experiment: GFP-FAM83C only (n=46); GFP-FAM83C + 

mCherry-CK1a (n=44); GFP-FAM83C (F293A) + mCherry-CK1a (n=41); GFP-FAM83C 

(D259A) + mCherry-CK1a (n=43); mCherry-CK1a only (n=45). Scale bar, 20 µm. 
 

Fig. 8: FAM83H colocalizes with and contributes to the subcellular localization of 
endogenous CK1a. A. FAM83H-/- U2OS cells were transfected with plasmids encoding either 

GFP-FAM83H, GFP-FAM83H (D236A), or GFP-FAM83H (F270A). Untransfected knockout 

(FAM83H-/-) cells were used as controls. Cells were processed for fluorescence microscopy with 

antibody recognizing CK1a. DNA was stained with DAPI. Images from one field of view 

representative of 3 independent experiments are included. Scale bar, 10 µm. B. The boxplot 

shows the range, mean, and lower and upper quartiles of the Pearson’s correlation coefficients 

of GFP-FAM83H and endogenous CK1a intensities within above-background pixels in the 

cytoplasm. C. GFP-FAM83H constructs were transfected into FAM83H-/- U2OS cells, and 

extracts were immunoblotted (IB) with the indicated antibodies. Untransfected wild-type (WT) 

cells were used as controls. This blot is representative of three independent experiments. 
 
Fig. 9: The intrinsic catalytic activity of CK1 is not affected by or required for the 
association of CK1 with FAM83 proteins. A. An in vitro kinase assay was performed in the 

presence of [γ32P]-ATP with recombinant GST-CK1α plus one of the following recombinant 

FAM83 fusion proteins: GST-FAM83A (A), MBP-FAM83B (B), GST-FAM83C (C), GST-FAM83D 

(D), GST-FAM83E (E), GST-FAM83F (F), GST-FAM83G-6His (G), or GST-FAM83H (H). After 

the reactions were stopped, samples were resolved by SDS-PAGE. The gel was stained with 

Instant blue, dried, and subjected to 32P autoradiography for the indicated times. Instant blue–

stained gel and autoradiograph representative of 3 independent experiments are shown. B. An 

in vitro kinase assay was set up with recombinant GST-CK1α, and either recombinant GST-

FAM83G-6His or the GST-FAM83G (F296A, F300A) double mutant in the presence of 

increasing amounts of the optimized CK1 peptide substrate CK1tide. GST-CK1α, without 
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FAM83G addition, was used as a control. Data points represent the average from three 

independent experiments, each including three replicates. Error bars, SEM. C. U2OS cells were 

transiently co-transfected with GFP-FAM83E, GFP-FAM83F, GFP-FAM83G, or GFP-FAM83H 

and either WT CK1α or a catalytically inactive (kinase dead, KD) form of CK1α. After 24 h cell 

extracts (Input) were immunoprecipitated (IP) with GFP-TRAP A beads and immunoblotted (IB) 

with the indicated antibodies. This blot is representative of 3 independent experiments. GAPDH 

is a loading control.  
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Figure S1. Sequence alignment of the DUF1669 domain of the FAM83 proteins.  

Full sequence alignment of the DUF1669 domain indicating the putative pseudo-PLD catalytic motif, 

the location of predicted CK1-interaction FXXXF motifs (F in yellow), and the location of two 

residues essential for CK1-interaction (asterisks).  
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Figure S2. Coomassie images of GFP-TRAP immunoprecipitations of FAM83A-H proteins 

used to identify interacting partners by mass spectrometry.  

(A) Extracts from doxycycline-treated (24 h) HEK 293 cells expressing N-terminally GFP-tagged 

FAM83A–H or GFP alone under the control of a Tet-inducible promoter were subjected to GFP trap 

immunoprecipitation and resolved by SDS-PAGE. The gels were Coomassie stained and imaged. 

The boxed regions in each lane represent the approximate excisions made in order to perform in-gel 

trypsin digestion and process the samples for protein identification by mass spectrometry. n=1. (B) 

As in A, except that C-terminally GFP-tagged FAM83A, FAM83C–H or GFP alone were expressed 

in U2OS cells, n=1.  

 

GFP

GFP-FAM83 A B C D

GFP-FAM83 E F G H

A HEK 293 cells

B U2OS cells
GFPFAM83-GFP A C D E F G H



 3 

 

 
Figure S3. Immunoblots of controls for Figure 2.  

(A) Cell extracts (Input) and flow-through following GFP immunoprecipitation were resolved by 

SDS-PAGE and immunoblotted with GFP antibodies. Short and long exposure images are shown. 

This blot is representative of 3 independent experiments. (B) Endogenous FAM83B and FAM83G 

genes were modified using CRISPR/Cas9 genome editing to insert GFP tags at the N terminus 

(GFP/GFPFAM83B) or C terminus (FAM83GGFP/GFP) of the gene. Cell extracts (Input) were resolved 

by SDS-PAGE and subjected to immunoblotting (IB) using the indicated antibodies. Cell extracts 

from unmodified cell lines (FAM83GWT/WT) are included. GAPDH is a loading control. This blot is 

representative of 3 independent experiments. 
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Figure S4. FAM83G interacts with CK1α, but not CK1γ or TTBK1.  

(A) The indicated FLAG- or HA-tagged CK1 isoforms and the related kinase TTBK2 were co-

expressed with FAM83G-GFP in U2OS cells. Cell extracts and GFP immunoprecipitations (IP) were 

resolved by SDS-PAGE and subjected to immunoblotting using the indicated antibodies. This blot 

is representative of 2 independent experiments. (B) Schematic highlighting the similarity of the 

kinase domains of various kinases of the CK1 kinase family. The percentage amino acid identity 

within the kinase domains of each kinase to that of CK1a kinase domain (aa 10-302) is indicated. 
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Figure S5. CK1-specificity switch with DUF1669 chimera.  

The DUF1669 domain of FAM83G, which interacts with CK1a only, was replaced with the 

DUF1669 domain of GFP-FAM83H, which interacts with both CK1a and CK1e. U20S cells were 

transfected with a construct encoding this chimeric protein (GFP-DUFH-FAM83G) or a construct 

encoding wild-type GFP-FAM83G or GFP-FAM83H. Cell extracts (Input) and GFP 

immunoprecipitations (IP) were resolved by SDS-PAGE and subjected to immunoblotting using 

the indicated antibodies. This blot is representative of 3 independent experiments. 
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Figure S6. Fluorescence images of GFP and mCherry-CK1a controls.  

U2OS cells stably integrated with Tet-inducible expression of GFP were transfected with mCherry-

CK1a. Wild-type U2OS cells were transfected with mCherry-CK1a as a negative control. GFP 

expression was induced with doxycycline for 24 h prior to processing cells for fluorescence 

microscopy. DNA was stained with DAPI. Representative images from one field of view from 3 

independent experiments are shown.  
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Figure S7. FAM83H co-localizes with and contributes to the subcellular localization of 

endogenous CK1ε.  

(A) FAM83H-/- U2OS cells were transfected with vectors encoding GFP-FAM83H, GFP-FAM83H 

(D236A), or GFP-FAM83H (F270A). Untransfected cells are included as a control. Cells were 

processed for fluorescence microscopy with an antibody recognizing CK1ε. DNA was stained with 

DAPI. Representative images from one field of view from 3 independent experiments are shown. 

Scale bar, 10 µm. (B) The boxplot shows the range, mean, and lower and upper quartiles of the 

Pearson’s correlation coefficients of GFP-FAM83H and endogenous CK1ε intensities within above-

background pixels in the cytoplasm.  

 

 

 

 
 

 
 



 8 

 

 
 
Figure S8. Validation of antibodies recognizing CK1a and CK1e for immunofluorescence 

applications.  

(A) U2OS cells were transfected with mCherry-CK1a. Cells were processed for fluorescence 

microscopy with the CK1a antibody. DNA was stained with DAPI. Representative low and high 

exposure (exp.) images from one field of view from 1 experiment are included. (B) As in A, except 

that U2OS cells were transfected with mCherry-CK1e and stained with the CK1e antibody. 
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File S1.  Supplemental ImageJ macro for quantification of protein co-localization in 
cells. 

This macro is provided as a separate .txt file. 
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