98 research outputs found

    What does it mean to be a 'picky eater'? A qualitative study of food related identities and practices.

    No full text
    Picky eaters are defined as those who consume an inadequate variety of food through rejection of a substantial amount of food stuffs that are both familiar and unfamiliar. Picky eating is a relatively recent theoretical concept and while there is increasing concern within public health over the lack of diversity in some children's diets, adult picky eaters remain an under researched group. This paper reports on the findings of a qualitative study on the routine food choices and practices of 26 families in Sandwell, West Midlands, UK. Photo elicitation and go-along interview data collection methods were used to capture habitual food related behaviours and served to describe the practices of nine individuals who self identified or were described as picky eaters. A thematic analysis revealed that those with the food related identity of picky eater had very restricted diets and experienced strong emotional and physical reactions to certain foods. For some this could be a distressing and alienating experience that hindered their ability to engage in episodes of social eating. Further research is needed to illuminate the specific practices of adult picky eaters, how this impacts on their lives, and how possible interventions might seek to address the challenges they face

    Interfacial Properties of Ultrathin- Film Metal Electrodes: Studies by Combined Electron Spectroscopy and Electrochemistry

    Get PDF
    A pair of studies investigating the deposition and surface chemical properties of ultrathin metal films were pursued: (i) Pt-Co alloys on Mo(110); and (ii) Pd on Pt(111). Experimental measurement was based on a combination of electron spectroscopy (low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and low energy electron diffraction) and electrochemistry (voltage efficiency, voltammetry, and coulometry). Mixed-metal preparation of Pt-Co films by thermal vapor deposition (TVD) resulted in a thin-film binary alloy. Careful analysis revealed a substantial divergence between the composition at the interface and that in the interior. This outcome was observed for all compositions and allowed for the construction of a ?surface phase diagram?. The proclivities of the alloys of pre-selected compositions towards enhanced catalysis of the oxygen-reduction reaction were assessed in terms of their voltage efficiencies, as manifested by the open-circuit potential (OCP) in O2-saturated dilute sulfuric acid electrolyte. The particular alloy surface, Pt3Co (XPt=3,XCo=1), whether from the thin film or a bulk single crystal, exhibited the highest OCP, a significant improvement over pure Pt but still appreciably lower than the thermodynamic limit. Under test conditions, the degradation of thusly-prepared films was primarily due to Co corrosion. Ultrathin Pd films on well-defined Pt(111) surfaces, with coverages from 0.5 to 8 monolayers (ML), were prepared by surface-limited redox replacement reaction (galvanic exchange) of underpotentially deposited Cu. Spectroscopic data revealed that films prepared in this manner are elementally pure, pseudomorphic to the substrate, and stable, independent of the surface coverage (?) of palladium. Analysis of the voltammetric profiles in the hydrogen evolution region revealed unique properties of hydrogen adsorption unseen in bulk electrodes. Notably, at 1 ML coverage, a step-free film was produced that did not exhibit hydrogen absorption. At higher coverages, digital (layer-by-layer) deposition gave way to 3D islands in a Stranski- Krastanov growth mode; under these conditions, onset of bulk-like behavior was observed. This method makes possible the synthesis of well-ordered noble-metal films in the absence of high-temperature treatmen

    Beneath the surface of the First World Ocean Assessment: An investigation into the global process’ support for sustainable development

    Get PDF
    The United Nations’ 2030 Sustainable Development Goals have articulated sustainable development requirements at the international level. SDG14: life below water, has in particular, provided a future pathway for sustainable development of the ocean environment. With the establishment of this global perspective has come a renewed emphasis on the need for global ocean knowledge production. The 2015 First World Ocean Assessment (FWOA), which was produced by the first cycle of the United Nations’ Regular Process for Global Reporting and Assessment of the State of the Marine Environment, including Socio-economic Aspects, is widely viewed as a primary tool to guiding action on SDG14. This research investigates how effective the FWOA has been at supporting these efforts toward sustainable development of the ocean environment. We use a combination of approaches, including document mining, an internationally distributed survey and semi-structured interviews to better understand the impact of the FWOA as well as the interrelated functioning of the Regular Process’ first cycle. While the FWOA was successful in compiling well accepted and credible ocean information, it was unable to generate the impact on sustainable ocean management activities that had originally been expected of it. Funding restrictions, participation issues and political anxieties seemed to derail the first cycle of the Regular Process from initial recommendations and directed the process into unorthodox operations and substantial political control. With the Second World Ocean Assessment (SWOA) well underway, it is imperative that trust is built and social learning is encouraged between participants in the Regular Process

    Contrasting approaches to 'doing' family meals: a qualitative study of how parents frame children's food preferences

    Get PDF
    Family meals, as acts of domestic food provisioning, are shaped by the competing influences of household resources, food preferences and broader cultural norms around dietary practices. The place of children's food tastes in family meal practices is particularly complex. Food tastes stand in a reciprocal relationship with family food practices: being both an influence on and a product of them. This paper explores how parents think about and respond to their children's food preferences in relation to family meal practices. A qualitative study was conducted with residents of Sandwell, UK. The results presented here are based on the responses of nine key participants and their families. Photo elicitation methods generated participant food photo diaries that were used to inform subsequent interviews. A thematic analysis revealed two contrasting ways of incorporating children's tastes into family meal routines: (1) 'what we fancy' and (2) 'regulated'. The former entails repeatedly consulting and negotiating with children over what to cook for each meal. It is supported by the practical strategies of multiple and individually modified meals. The latter relies upon parents developing a repertoire of meals that 'work' for the family. This repertoire is performed as a series of 'set meals' in which any requests for variation are strongly resisted. Our findings add to the small body of literature on household food provisioning and suggest that achieving the idealised ritual of the family meal is underpinned by a range of values and strategies, some of which may run counter to health messages about nutrition

    Selective conversion of CO into ethanol on Cu(511) surface reconstructed from Cu(pc): Operando studies by electrochemical scanning tunneling microscopy, mass spectrometry, quartz crystal nanobalance, and infrared spectroscopy

    Get PDF
    A polycrystalline copper, surface-terminated by a well-defined (511)-oriented facet, was electrochemically generated by a series of step-wise surface reconstruction and iterations of mild oxidative-reductive processes in 0.1 M KOH. The electrochemical reduction of CO on the resultant stepped surface was investigated by four surface-sensitive operando methodologies: electrochemical scanning tunneling microscopy (STM), electrochemical quartz crystal nanobalance (EQCN), differential electrochemical mass spectrometry (DEMS), and polarization-modulation infrared spectroscopy (PMIRS). The stepped surface catalyzed the facile conversion of CO into ethanol, the exclusive alcohol product at a low overpotential of −1.06 V (SHE) or − 0.3 V (RHE). The chemisorption of CO was found to be a necessary prelude to ethanol production; i.e. the surface coverages, rather than solution concentrations, of CO and its surface-bound intermediates primarily dictate the reaction rates (current densities). Contrary to the expected predominance of undercoordinated step-site reactivity over the coordination chemistry of vicinal surfaces, vibrational spectroscopic evidence reveals the involvement of terrace-bound CO adsorbates during the multi-atomic transformations associated with the production of ethanol

    Reprint of "Selective conversion of CO into ethanol on Cu(511) surface reconstructed from Cu(pc): Operando studies by electrochemical scanning tunneling microscopy, mass spectrometry, quartz crystal nanobalance, and infrared spectroscopy"

    Get PDF
    A polycrystalline copper, surface-terminated by a well-defined (511)-oriented facet, was electrochemically generated by a series of step-wise surface reconstruction and iterations of mild oxidative-reductive processes in 0.1 M KOH. The electrochemical reduction of CO on the resultant stepped surface was investigated by four surface-sensitive operando methodologies: electrochemical scanning tunneling microscopy (STM), electrochemical quartz crystal nanobalance (EQCN), differential electrochemical mass spectrometry (DEMS), and polarization-modulation infrared spectroscopy (PMIRS). The stepped surface catalyzed the facile conversion of CO into ethanol, the exclusive alcohol product at a low overpotential of −1.06 V (SHE) or − 0.3 V (RHE). The chemisorption of CO was found to be a necessary prelude to ethanol production; i.e. the surface coverages, rather than solution concentrations, of CO and its surface-bound intermediates primarily dictate the reaction rates (current densities). Contrary to the expected predominance of undercoordinated step-site reactivity over the coordination chemistry of vicinal surfaces, vibrational spectroscopic evidence reveals the involvement of terrace-bound CO adsorbates during the multi-atomic transformations associated with the production of ethanol

    Surface reconstruction of pure-Cu single-crystal electrodes under Co-reduction potentials in alkaline solutions: A study by seriatim ECSTM-DEMS

    Get PDF
    Quasi-operando electrochemical scanning tunneling microscopy (ECSTM) recently showed that a polycrystalline Cu electrode kept in 0.1 M KOH at − 0.9 V (SHE), a potential very close to that for electrochemical CO reduction, underwent a two-step surface reconstruction, initially to Cu(111), or Cu(pc)-[Cu(111)], and terminally to Cu(100), or Cu(pc)-[Cu(100)]. When subjected to monolayer-limited Cu_((s)) ↔ Cu_2O_((s)) oxidation-reduction cycles (ORC), the Cu(pc)-[Cu(100)] surface was further transformed to Cu(pc)-[Cu(511)] that produced C_2H_5OH exclusively, as detected by differential electrochemical mass spectrometry, at an overvoltage lower by 645 mV relative to that for the formation of hydrocarbons. In this paper, results are presented from studies with the native monocrystalline surfaces Cu(111), Cu(100) and Cu(110). Whereas the intermediate Cu(pc)-[Cu(111)] layer was eventually converted to Cu(pc)-[Cu(100)], the surface of a pristine Cu(111) single crystal itself showed no such conversion. The surface of an original Cu(100) electrode likewise proved impervious to potential perturbations. In contrast, the outer plane of a Cu(110) crystal underwent three transformations: first to disordered Cu(110)-d[Cu(110)], then to disordered Cu(110)-d[Cu(111)], and finally to an ordered Cu(110)-[Cu(100)] plane. After multiple ORC, the converted [Cu(100)] lattice atop the Cu(110) crystal did not generate ethanol, in contrast to the [Cu(100)] phase above the Cu(pc) bulk. Quasi-operando ECSTM captured the disparity: Post-ORC, Cu(110)-[Cu(100)] was converted, not to Cu(110)-[Cu(511)], but to an ordered but catalytically inactive Cu(110)-[Cu(111)]; hence, no C2H5OH production upon reduction of CO, as would have been the case for a stepped Cu(511) surface

    Investigation of Resonant Photoemission in Gd with X-Ray Linear Dichroism

    Get PDF
    The constructive summing of direct and indirect channels above the absorption threshold of a core level can cause a massive increase in the emission cross section, leading to a phenomenon called resonant photoemission. Using novel magnetic linear dichroism in angular distribution photoelectron spectroscopy experiments and theoretical simulations, we have probed the nature of the resonant photoemission process in Gd metal. It now appears that temporal matching as well as energy matching is a requirement for true resonant photoemission
    • …
    corecore